IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v99y2016icp221-236.html
   My bibliography  Save this article

A mathematical model formulation for the design of an integrated biodiesel-petroleum diesel blends system

Author

Listed:
  • Ivanov, Boyan
  • Stoyanov, Stoyan

Abstract

This paper addresses the strategic planning of an IBSC (integrated biofuel supply chain) using total annualized cost and total life cycle GHG (green house gas) emissions as economic and environmental criteria respectively. The IBSC for an extended planning horizon H (e.g. 10 years) is considered and horizon H is further subdivided into a set of discrete time intervals. For each of these subintervals the diesel and the biodiesel fuel consumption can be varied according to a predetermined value. A mixed-integer linear programming model of biodiesel production that takes into account infrastructure compatibility, demand distribution, size and location of biorefineries using the available biomass and carbon tax data is proposed. An important aspect of the proposed model is the inclusion of crop rotation conditions to assure the supply of biological feedstock. The price of biodiesel and any byproducts produced are included in the model. Inputs to the model are the quantity of biological feedstock, the cost of biomass transportation, as well as inventory and processing costs. The proposed model is illustrated in Part 2 of this work with an example of Bulgarian economy for planning period 2010 to 2020 when the objectives of the Renewable Energy Directive 28/2009/EC will be achieved.

Suggested Citation

  • Ivanov, Boyan & Stoyanov, Stoyan, 2016. "A mathematical model formulation for the design of an integrated biodiesel-petroleum diesel blends system," Energy, Elsevier, vol. 99(C), pages 221-236.
  • Handle: RePEc:eee:energy:v:99:y:2016:i:c:p:221-236
    DOI: 10.1016/j.energy.2016.01.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216000591
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.01.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yongxi & Chen, Chien-Wei & Fan, Yueyue, 2010. "Multistage optimization of the supply chains of biofuels," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 820-830, November.
    2. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    3. Osmani, Atif & Zhang, Jun, 2014. "Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties," Energy, Elsevier, vol. 70(C), pages 514-528.
    4. Perpiñá, C. & Alfonso, D. & Pérez-Navarro, A. & Peñalvo, E. & Vargas, C. & Cárdenas, R., 2009. "Methodology based on Geographic Information Systems for biomass logistics and transport optimisation," Renewable Energy, Elsevier, vol. 34(3), pages 555-565.
    5. Duarte, Alexandra E. & Sarache, William A. & Costa, Yasel J., 2014. "A facility-location model for biofuel plants: Applications in the Colombian context," Energy, Elsevier, vol. 72(C), pages 476-483.
    6. Yılmaz Balaman, Şebnem & Selim, Hasan, 2014. "A fuzzy multiobjective linear programming model for design and management of anaerobic digestion based bioenergy supply chains," Energy, Elsevier, vol. 74(C), pages 928-940.
    7. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    8. Azadeh, Ali & Vafa Arani, Hamed & Dashti, Hossein, 2014. "A stochastic programming approach towards optimization of biofuel supply chain," Energy, Elsevier, vol. 76(C), pages 513-525.
    9. Börjesson, Pål & Gustavsson, Leif, 1996. "Regional production and utilization of biomass in Sweden," Energy, Elsevier, vol. 21(9), pages 747-764.
    10. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    11. Nixon, J.D. & Dey, P.K. & Davies, P.A. & Sagi, S. & Berry, R.F., 2014. "Supply chain optimisation of pyrolysis plant deployment using goal programming," Energy, Elsevier, vol. 68(C), pages 262-271.
    12. Awudu, Iddrisu & Zhang, Jun, 2013. "Stochastic production planning for a biofuel supply chain under demand and price uncertainties," Applied Energy, Elsevier, vol. 103(C), pages 189-196.
    13. Fahimnia, Behnam & Sarkis, Joseph & Davarzani, Hoda, 2015. "Green supply chain management: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 162(C), pages 101-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, D.Z. & Zheng, Z.Y. & Shi, H.B. & Xiao, Rui & Huang, G.H. & Li, Y.P., 2017. "A multi-fuel management model for a community-level district heating system under multiple uncertainties," Energy, Elsevier, vol. 128(C), pages 337-356.
    2. Suzan Abdelhady & Mohamed A. Shalaby & Ahmed Shaban, 2021. "Techno-Economic Analysis for the Optimal Design of a National Network of Agro-Energy Biomass Power Plants in Egypt," Energies, MDPI, vol. 14(11), pages 1-26, May.
    3. Chávez, Marcela María Morales & Sarache, William & Costa, Yasel, 2018. "Towards a comprehensive model of a biofuel supply chain optimization from coffee crop residues," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 136-162.
    4. Zhou, Xiaoyang & Wei, Xiaoya & Lin, Jun & Tian, Xin & Lev, Benjamin & Wang, Shouyang, 2021. "Supply chain management under carbon taxes: A review and bibliometric analysis," Omega, Elsevier, vol. 98(C).
    5. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    6. Evgeniy Ganev & Boyan Ivanov & Natasha Vaklieva-Bancheva & Elisaveta Kirilova & Yunzile Dzhelil, 2021. "A Multi-Objective Approach toward Optimal Design of Sustainable Integrated Biodiesel/Diesel Supply Chain Based on First- and Second-Generation Feedstock with Solid Waste Use," Energies, MDPI, vol. 14(8), pages 1-38, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    2. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    3. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    4. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    5. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    6. Leonel J. R. Nunes & Sandra Silva, 2023. "Optimization of the Residual Biomass Supply Chain: Process Characterization and Cost Analysis," Logistics, MDPI, vol. 7(3), pages 1-21, August.
    7. De Meyer, Annelies & Cattrysse, Dirk & Van Orshoven, Jos, 2016. "Considering biomass growth and regeneration in the optimisation of biomass supply chains," Renewable Energy, Elsevier, vol. 87(P2), pages 990-1002.
    8. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    9. Azadeh, Ali & Vafa Arani, Hamed, 2016. "Biodiesel supply chain optimization via a hybrid system dynamics-mathematical programming approach," Renewable Energy, Elsevier, vol. 93(C), pages 383-403.
    10. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    11. Jayarathna, Lasinidu & Kent, Geoff & O'Hara, Ian & Hobson, Philip, 2020. "A Geographical Information System based framework to identify optimal location and size of biomass energy plants using single or multiple biomass types," Applied Energy, Elsevier, vol. 275(C).
    12. Liu, Wan-Yu & Lin, Chun-Cheng & Yeh, Tzu-Lei, 2017. "Supply chain optimization of forest biomass electricity and bioethanol coproduction," Energy, Elsevier, vol. 139(C), pages 630-645.
    13. Zhang, Fengli & Johnson, Dana M. & Wang, Jinjiang, 2016. "Integrating multimodal transport into forest-delivered biofuel supply chain design," Renewable Energy, Elsevier, vol. 93(C), pages 58-67.
    14. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    15. Faissal Jelti & Amine Allouhi & Mahmut Sami Büker & Rachid Saadani & Abdelmajid Jamil, 2021. "Renewable Power Generation: A Supply Chain Perspective," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    16. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    17. Xuezhen Guo & Juliën Voogt & Bert Annevelink & Joost Snels & Argyris Kanellopoulos, 2020. "Optimizing Resource Utilization in Biomass Supply Chains by Creating Integrated Biomass Logistics Centers," Energies, MDPI, vol. 13(22), pages 1-16, November.
    18. Samsatli, Sheila & Samsatli, Nouri J. & Shah, Nilay, 2015. "BVCM: A comprehensive and flexible toolkit for whole system biomass value chain analysis and optimisation – Mathematical formulation," Applied Energy, Elsevier, vol. 147(C), pages 131-160.
    19. Flisberg, Patrik & Frisk, Mikael & Rönnqvist, Mikael & Guajardo, Mario, 2015. "Potential savings and cost allocations for forest fuel transportation in Sweden: A country-wide study," Energy, Elsevier, vol. 85(C), pages 353-365.
    20. De Meyer, Annelies & Cattrysse, Dirk & Van Orshoven, Jos, 2015. "A generic mathematical model to optimise strategic and tactical decisions in biomass-based supply chains (OPTIMASS)," European Journal of Operational Research, Elsevier, vol. 245(1), pages 247-264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:99:y:2016:i:c:p:221-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.