IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2021-04-6.html
   My bibliography  Save this article

Identification of Savings Opportunities in a Steel Manufacturing Industry

Author

Listed:
  • Victor A. Alcal Abraham

    (Electrical Engineering Student, Universidad de la Costa, Barranquilla, Colombia,)

  • Elkin D. Alem n Causil

    (Department of Energy, Universidad de la Costa, Barranquilla, Colombia)

  • Vladimir Sousa Santos

    (Department of Energy, Universidad de la Costa, Barranquilla, Colombia)

  • Eliana Noriega Angarita

    (Department of Energy, Universidad de la Costa, Barranquilla, Colombia)

  • Julio R. G mez Sarduy

    (Center of Energy and Environmental Studies, Universidad de Cienfuegos, Cuba.)

Abstract

This paper aims to present a procedure that allows identifying savings opportunities in a steel manufacturing company. The procedure based on the ISO 50001, 50004, and 50006 standards comprise the use of tools such as energy baselines, the goal line, energy performance indicators, the Pareto chart, and an energy review. As a result of the implementation of the procedure, it was possible to obtain the baseline, the goal line, and energy performance indicators that allow the control of energy consumption and efficiency of the company in general and of the area with the highest electricity consumption. It was possible to identify that there is a potential savings of up to 6% throughout the company and up to 13% in the area with the highest electrical energy consumption. From an energy review carried out in the area with the highest consumption, motors operating with low load and idle for long periods were identified, as well as a lack of maintenance. Besides, the replacement of traditional technology lamps by LED technology lamps was proposed. The procedure can be generalized in steel industries with similar characteristics, which is one of the sectors that consume the most energy worldwide.

Suggested Citation

  • Victor A. Alcal Abraham & Elkin D. Alem n Causil & Vladimir Sousa Santos & Eliana Noriega Angarita & Julio R. G mez Sarduy, 2021. "Identification of Savings Opportunities in a Steel Manufacturing Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 43-50.
  • Handle: RePEc:eco:journ2:2021-04-6
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/11142/5882
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/11142/5882
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vélez-Henao, Johan-Andrés & García-Mazo, Claudia-Maria & Freire-González, Jaume & Vivanco, David Font, 2020. "Environmental rebound effect of energy efficiency improvements in Colombian households," Energy Policy, Elsevier, vol. 145(C).
    2. Julio R. G mez Sarduy & Percy R. Viego Felipe & Yamile D az Torres & Mario A. lvarez-Guerra Plascencia & Vladimir Sousa Santos & Dries Haeseldonckx, 2018. "A New Energy Performance Indicator for Energy Management System of a Wheat Mill Plant," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 324-330.
    3. Manrique, Raiza & Vásquez, Daniela & Vallejo, Gabriel & Chejne, Farid & Amell, Andrés A. & Herrera, Bernardo, 2018. "Analysis of barriers to the implementation of energy efficiency actions in the production of ceramics in Colombia," Energy, Elsevier, vol. 143(C), pages 575-584.
    4. Tesema, Gudise & Worrell, Ernst, 2015. "Energy efficiency improvement potentials for the cement industry in Ethiopia," Energy, Elsevier, vol. 93(P2), pages 2042-2052.
    5. Milen Balbis Morejon & Juan Jose Cabello Eras & Alexis Sagastume Gutierrez & Vladimir Sousa Santos & Yabiel Perez Gomez & Juan Gabriel Rueda Bayona, 2019. "Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 103-112.
    6. Cabello Eras, Juan José & Sagastume Gutiérrez, Alexis & Sousa Santos, Vladimir & Cabello Ulloa, Mario Javier, 2020. "Energy management of compressed air systems. Assessing the production and use of compressed air in industry," Energy, Elsevier, vol. 213(C).
    7. Hossain, Syed Raihan & Ahmed, Istiak & Azad, Ferdous S. & Monjurul Hasan, A S M, 2020. "Empirical investigation of energy management practices in cement industries of Bangladesh," Energy, Elsevier, vol. 212(C).
    8. Hochman, Gal & Timilsina, Govinda R., 2017. "Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis," Energy Economics, Elsevier, vol. 63(C), pages 22-30.
    9. He, Kun & Wang, Li, 2017. "A review of energy use and energy-efficient technologies for the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1022-1039.
    10. Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong, 2020. "Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives," Applied Energy, Elsevier, vol. 268(C).
    11. Patrik Thollander & Jenny Palm, 2015. "Industrial Energy Management Decision Making for Improved Energy Efficiency—Strategic System Perspectives and Situated Action in Combination," Energies, MDPI, vol. 8(6), pages 1-10, June.
    12. Perez, Alex & Garcia-Rendon, John J., 2021. "Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia," Renewable Energy, Elsevier, vol. 167(C), pages 146-161.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    2. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
    4. Shuangping Wu & Anjun Xu, 2021. "Calculation Method of Energy Saving in Process Engineering: A Case Study of Iron and Steel Production Process," Energies, MDPI, vol. 14(18), pages 1-15, September.
    5. Liao, Nuo & He, Yong, 2018. "Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model," Energy, Elsevier, vol. 158(C), pages 782-795.
    6. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Alexis Sagastume Gutiérrez & Juan Jose Cabello Eras & Jorge Mario Mendoza Fandiño & Humberto Carlos Tavera Quiroz, 2023. "Management of Natural Gas Consumption during the Manufacturing of Lead-Acid Batteries," Sustainability, MDPI, vol. 15(15), pages 1-27, August.
    8. Massimo Borg & Paul Refalo & Emmanuel Francalanza, 2023. "Failure Detection Techniques on the Demand Side of Smart and Sustainable Compressed Air Systems: A Systematic Review," Energies, MDPI, vol. 16(7), pages 1-36, March.
    9. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    10. He, Yong & Liao, Nuo & Zhou, Ya, 2018. "Analysis on provincial industrial energy efficiency and its influencing factors in China based on DEA-RS-FANN," Energy, Elsevier, vol. 142(C), pages 79-89.
    11. Che, Gelegen & Zhang, Yanyan & Tang, Lixin & Zhao, Shengnan, 2023. "A deep reinforcement learning based multi-objective optimization for the scheduling of oxygen production system in integrated iron and steel plants," Applied Energy, Elsevier, vol. 345(C).
    12. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    13. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    14. Ma, Shuaiyin & Ding, Wei & Liu, Yang & Ren, Shan & Yang, Haidong, 2022. "Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries," Applied Energy, Elsevier, vol. 326(C).
    15. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    16. Xiaohua Song & Yun Long & Zhongfu Tan & Xubei Zhang & Leming Li, 2016. "The Optimization of Distributed Photovoltaic Comprehensive Efficiency Based on the Construction of Regional Integrated Energy Management System in China," Sustainability, MDPI, vol. 8(11), pages 1-19, November.
    17. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    18. Joakim Haraldsson & Simon Johnsson & Patrik Thollander & Magnus Wallén, 2021. "Taxonomy, Saving Potentials and Key Performance Indicators for Energy End-Use and Greenhouse Gas Emissions in the Aluminium Industry and Aluminium Casting Foundries," Energies, MDPI, vol. 14(12), pages 1-26, June.
    19. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    20. Marques, António Cardoso & Junqueira, Thibaut Manuel, 2022. "European energy transition: Decomposing the performance of nuclear power," Energy, Elsevier, vol. 245(C).

    More about this item

    Keywords

    Electricity; Energy; Energy Efficiency; Energy Saving; Energy Performance Indicator; Steel Industry;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • L61 - Industrial Organization - - Industry Studies: Manufacturing - - - Metals and Metal Products; Cement; Glass; Ceramics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2021-04-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.