IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i6p5694-5703d51130.html
   My bibliography  Save this article

Industrial Energy Management Decision Making for Improved Energy Efficiency—Strategic System Perspectives and Situated Action in Combination

Author

Listed:
  • Patrik Thollander

    (Department of Management and Engineering, Division of Energy Systems, Linköping University, Linköping SE-581 83, Sweden
    Department of Building, Energy and Environment Engineering, University of Gävle, Gävle SE-801 76, Sweden)

  • Jenny Palm

    (Department of Thematic Studies—Technology and Social Change, Linköping University, Linköping SE-581 83, Sweden)

Abstract

Improved industrial energy efficiency is a cornerstone in climate change mitigation. Research results suggest that there is still major untapped potential for improved industrial energy efficiency. The major model used to explain the discrepancy between optimal level of energy efficiency and the current level is the barrier model, e.g., different barriers to energy efficiency inhibit adoption of cost-effective measures. The measures outlined in research and policy action plans are almost exclusively technology-oriented, but great potential for energy efficiency improvements is also found in operational measures. Both technology and operational measures are combined in successful energy management practices. Most research in the field of energy management is grounded in engineering science, and theoretical models on how energy management in industry is carried out are scarce. One way to further develop and improve energy management, both theoretically as well as practically, is to explore how a socio-technical perspective can contribute to this understanding. In this article we will further elaborate this potential of cross-pollinating these fields. The aim of this paper is to relate energy management to two theoretical models, situated action and transaction analysis. We conclude that the current model for energy management systems, the input-output model, is insufficient for understanding in-house industrial energy management practices. By the incorporation of situated action and transaction analysis to the currently used input-output model, an enhanced understanding of the complexity of energy management is gained. It is not possible to find a single energy management solution suitable for any industrial company, but rather the idea is to find a reflexive model that can be adjusted from time to time. An idea for such a reflexive model would contain the structural elements from energy management models with consideration for decisions being situated and impossible to predict.

Suggested Citation

  • Patrik Thollander & Jenny Palm, 2015. "Industrial Energy Management Decision Making for Improved Energy Efficiency—Strategic System Perspectives and Situated Action in Combination," Energies, MDPI, vol. 8(6), pages 1-10, June.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:5694-5703:d:51130
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/6/5694/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/6/5694/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    2. Rezessy, Silvia & Bertoldi, Paolo, 2011. "Voluntary agreements in the field of energy efficiency and emission reduction: Review and analysis of experiences in the European Union," Energy Policy, Elsevier, vol. 39(11), pages 7121-7129.
    3. Ryghaug, Marianne & Sørensen, Knut H., 2009. "How energy efficiency fails in the building industry," Energy Policy, Elsevier, vol. 37(3), pages 984-991, March.
    4. Thollander, Patrik & Kimura, Osamu & Wakabayashi, Masayo & Rohdin, Patrik, 2015. "A review of industrial energy and climate policies in Japan and Sweden with emphasis towards SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 504-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ainur Munirah Hafizan & Jiří Jaromír Klemeš & Sharifah Rafidah Wan Alwi & Zainuddin Abdul Manan & Mohd Kamaruddin Abd Hamid, 2019. "Temperature Disturbance Management in a Heat Exchanger Network for Maximum Energy Recovery Considering Economic Analysis," Energies, MDPI, vol. 12(4), pages 1-30, February.
    2. He, Yong & Liao, Nuo & Zhou, Ya, 2018. "Analysis on provincial industrial energy efficiency and its influencing factors in China based on DEA-RS-FANN," Energy, Elsevier, vol. 142(C), pages 79-89.
    3. Mette Talseth Solnørdal & Elin Anita Nilsen, 2020. "From Program to Practice: Translating Energy Management in a Manufacturing Firm," Sustainability, MDPI, vol. 12(23), pages 1-24, December.
    4. Javier Serrano & Jesús Acero & Rafael Alonso & Claudio Carretero & Ignacio Lope & José Miguel Burdío, 2016. "Design and Implementation of a Test-Bench for Efficiency Measurement of Domestic Induction Heating Appliances," Energies, MDPI, vol. 9(8), pages 1-11, August.
    5. Aida Sa & Patrik Thollander & Majid Rafiee, 2018. "Industrial Energy Management Systems and Energy-Related Decision-Making," Energies, MDPI, vol. 11(10), pages 1-12, October.
    6. Liao, Nuo & He, Yong, 2018. "Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model," Energy, Elsevier, vol. 158(C), pages 782-795.
    7. Guglielmo Maria Caporale & Cristiana Donati & Nicola Spagnolo, 2023. "European SMEs and Resource Efficiency Measures: Firm Characteristics and Contextual Factors," CESifo Working Paper Series 10799, CESifo.
    8. Aida Sa & Patrik Thollander & Enrico Cagno & Majid Rafiee, 2018. "Assessing Swedish Foundries Energy Management Program," Energies, MDPI, vol. 11(10), pages 1-13, October.
    9. Tanoni, Giulia & Principi, Emanuele & Squartini, Stefano, 2024. "Non-Intrusive Load Monitoring in industrial settings: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    10. Xiaohua Song & Yun Long & Zhongfu Tan & Xubei Zhang & Leming Li, 2016. "The Optimization of Distributed Photovoltaic Comprehensive Efficiency Based on the Construction of Regional Integrated Energy Management System in China," Sustainability, MDPI, vol. 8(11), pages 1-19, November.
    11. Jinpeng Liu & Yun Long & Xiaohua Song, 2017. "A Study on the Conduction Mechanism and Evaluation of the Comprehensive Efficiency of Photovoltaic Power Generation in China," Energies, MDPI, vol. 10(5), pages 1-22, May.
    12. Palm, J. & Kojonsaari, A.-R. & Öhrlund, I. & Fowler, N. & Bartusch, C., 2023. "Drivers and barriers to participation in Sweden's local flexibility markets for electricity," Utilities Policy, Elsevier, vol. 82(C).
    13. Cucchiella, Federica & D’Adamo, Idiano & Gastaldi, Massimo & Koh, SC Lenny & Rosa, Paolo, 2017. "A comparison of environmental and energetic performance of European countries: A sustainability index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 401-413.
    14. Shun Jia & Qinghe Yuan & Dawei Ren & Jingxiang Lv, 2017. "Energy Demand Modeling Methodology of Key State Transitions of Turning Processes," Energies, MDPI, vol. 10(4), pages 1-19, April.
    15. Kristaps Locmelis & Dagnija Blumberga & Andra Blumberga & Anna Kubule, 2020. "Benchmarking of Industrial Energy Efficiency. Outcomes of an Energy Audit Policy Program," Energies, MDPI, vol. 13(9), pages 1-15, May.
    16. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    17. Patrik Thollander & Jenny Palm & Johan Hedbrant, 2019. "Energy Efficiency as a Wicked Problem," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
    18. Vincenzo Dovì & Antonella Battaglini, 2015. "Energy Policy and Climate Change: A Multidisciplinary Approach to a Global Problem," Energies, MDPI, vol. 8(12), pages 1-8, November.
    19. Alexander Melnik & Kirill Ermolaev, 2020. "Strategy Context of Decision Making for Improved Energy Efficiency in Industrial Energy Systems," Energies, MDPI, vol. 13(7), pages 1-28, March.
    20. Victor A. Alcal Abraham & Elkin D. Alem n Causil & Vladimir Sousa Santos & Eliana Noriega Angarita & Julio R. G mez Sarduy, 2021. "Identification of Savings Opportunities in a Steel Manufacturing Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 43-50.
    21. Thomas Zobel & Charlotte Malmgren, 2016. "Evaluating the Management System Approach for Industrial Energy Efficiency Improvements," Energies, MDPI, vol. 9(10), pages 1-12, September.
    22. Rogério Diogne de Souza e Silva & Rosana Cavalcante de Oliveira & Maria Emília de Lima Tostes, 2017. "Analysis of the Brazilian Energy Efficiency Program for Electricity Distribution Systems," Energies, MDPI, vol. 10(9), pages 1-19, September.
    23. Catalin Popescu & Eglantina Hysa & Alba Kruja & Egla Mansi, 2022. "Social Innovation, Circularity and Energy Transition for Environmental, Social and Governance (ESG) Practices—A Comprehensive Review," Energies, MDPI, vol. 15(23), pages 1-28, November.
    24. Kiril Simeonovski & Tamara Kaftandzieva & Gregory Brock, 2021. "Energy Efficiency Management across EU Countries: A DEA Approach," Energies, MDPI, vol. 14(9), pages 1-19, May.
    25. José Rafael Lopes & Salvador Ávila & Ricardo Kalid & Jorge Laureano Moya Rodríguez, 2018. "Energy Efficiency Improvement in Non-Intensive Energy Enterprises: A Framework Proposal," Energies, MDPI, vol. 11(5), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paramonova, Svetlana & Thollander, Patrik & Ottosson, Mikael, 2015. "Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 472-483.
    2. Paramonova, Svetlana & Thollander, Patrik, 2016. "Energy-efficiency networks for SMEs: Learning from the Swedish experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 295-307.
    3. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    4. Patrik Thollander & Jenny Palm & Johan Hedbrant, 2019. "Energy Efficiency as a Wicked Problem," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
    5. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    6. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    7. Josefin Borg & Anna Yström, 2020. "Collaborating for energy efficiency in Swedish shipping industry: interrelating practice and challenges," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4289-4310, June.
    8. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    9. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Joern Hoppmann & Alice Sakhel & Marcel Richert, 2018. "With a little help from a stranger: The impact of external change agents on corporate sustainability investments," Business Strategy and the Environment, Wiley Blackwell, vol. 27(7), pages 1052-1066, November.
    11. Naomi Tan & John Harrison & Mark Howells, 2024. "Comparing Long-Term Power Sector Pathways in Viet Nam: A Simple Cost-Optimization Approach with OSeMOSYS," Energies, MDPI, vol. 17(23), pages 1-24, December.
    12. Jiang, Wenbing & Du, Lei & Wei, Huafei & Sun, Helin, 2024. "The influence of urban new energy development orientation on new energy technology innovation in firms," Renewable Energy, Elsevier, vol. 237(PD).
    13. Obadiah I. Damak & Hasan Güngör, 2025. "The effects of rule of law, regulatory quality, and R&D on Japan's environmental sustainability," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(2), pages 2278-2291, April.
    14. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    15. Abdullah Emre Keleş & Ecem Önen & Jarosław Górecki, 2022. "Determination of Green Building Awareness: A Study in Turkey," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    16. Ana Medina & Ángeles Cámara & José-Ramón Monrobel, 2016. "Measuring the Socioeconomic and Environmental Effects of Energy Efficiency Investments for a More Sustainable Spanish Economy," Sustainability, MDPI, vol. 8(10), pages 1-21, October.
    17. Altwies, Joy E. & Nemet, Gregory F., 2013. "Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology," Energy Policy, Elsevier, vol. 52(C), pages 819-831.
    18. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    19. de la Rue du Can, Stephane & Pudleiner, David & Pielli, Katrina, 2018. "Energy efficiency as a means to expand energy access: A Uganda roadmap," Energy Policy, Elsevier, vol. 120(C), pages 354-364.
    20. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley, 2017. "The relationship between enterprise efficiency in resource use and energy efficiency practices adoption," International Journal of Production Economics, Elsevier, vol. 190(C), pages 108-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:5694-5703:d:51130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.