IDEAS home Printed from https://ideas.repec.org/a/cbu/jrnlec/y2022v4p298-318.html
   My bibliography  Save this article

Life Cycle Cost In The Built Environment In The Context Of Sustainable Development

Author

Listed:
  • CARAIMAN ADRIAN-COSMIN

    (POLITEHNICA UNIVERSITY OF TIMISOARA, TIMISOARA)

Abstract

Life cycle cost is a widely recognised method as an important instrument for assessing the economic performance of energy and water conservation as well as renewable energy projects undertaken in both the public, country and private sectors. The method applies to any project, public or private, where future savings on operational costs are weighed against higher initial costs of capital investment. In other news, the life cycle cost in construction strengthens the resilience of a building, optimizes costs, and, last but not least, allows the choice of the right method for calculating life cycle costs. Life cycle cost analysis (LCCA or LCC briefly) is an objective method of measuring and managing costs over the period of any project or asset. In construction, it allows to compare design options from the perspective of service life to reduce overall costs. The LCC provides a method for assessing the costs that occur over the resistance period of a building, from construction, use and maintenance, to the end of its service period. Thus, it provides a stronger view of long-term costs and savings compared to other methods.

Suggested Citation

  • Caraiman Adrian-Cosmin, 2022. "Life Cycle Cost In The Built Environment In The Context Of Sustainable Development," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 298-318, August.
  • Handle: RePEc:cbu:jrnlec:y:2022:v:4:p:298-318
    as

    Download full text from publisher

    File URL: https://www.utgjiu.ro/revista/ec/pdf/2022-04/35_Caraiman.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ryghaug, Marianne & Sørensen, Knut H., 2009. "How energy efficiency fails in the building industry," Energy Policy, Elsevier, vol. 37(3), pages 984-991, March.
    2. Jakob, Martin, 2006. "Marginal costs and co-benefits of energy efficiency investments: The case of the Swiss residential sector," Energy Policy, Elsevier, vol. 34(2), pages 172-187, January.
    3. Kovacic, Iva & Zoller, Veronika, 2015. "Building life cycle optimization tools for early design phases," Energy, Elsevier, vol. 92(P3), pages 409-419.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karásek, Jiří & Pojar, Jan & Kaločai, Ladislav & Heralová, Renáta Schneiderová, 2018. "Cost optimum calculation of energy efficiency measures in the Czech Republic," Energy Policy, Elsevier, vol. 123(C), pages 155-166.
    2. Wesam Salah Alaloul & Muhammad Altaf & Muhammad Ali Musarat & Muhammad Faisal Javed & Amir Mosavi, 2021. "Systematic Review of Life Cycle Assessment and Life Cycle Cost Analysis for Pavement and a Case Study," Sustainability, MDPI, vol. 13(8), pages 1-38, April.
    3. Marszal, Anna Joanna & Heiselberg, Per & Lund Jensen, Rasmus & Nørgaard, Jesper, 2012. "On-site or off-site renewable energy supply options? Life cycle cost analysis of a Net Zero Energy Building in Denmark," Renewable Energy, Elsevier, vol. 44(C), pages 154-165.
    4. Caraiman Adrian-Cosmin & Dan Sorin & Pescari Simon, 2023. "Life Cycle Cost In The Built Environment, Actualization, Inflation And The Money Value Over Time," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 2, pages 139-146, April.
    5. Marszal, Anna Joanna & Heiselberg, Per, 2011. "Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark," Energy, Elsevier, vol. 36(9), pages 5600-5609.
    6. Morrissey, J. & Meyrick, B. & Sivaraman, D. & Horne, R.E. & Berry, M., 2013. "Cost-benefit assessment of energy efficiency investments: Accounting for future resources, savings and risks in the Australian residential sector," Energy Policy, Elsevier, vol. 54(C), pages 148-159.
    7. Khayatian, Fazel & Sarto, Luca & Dall'O', Giuliano, 2017. "Building energy retrofit index for policy making and decision support at regional and national scales," Applied Energy, Elsevier, vol. 206(C), pages 1062-1075.
    8. Josefin Borg & Anna Yström, 2020. "Collaborating for energy efficiency in Swedish shipping industry: interrelating practice and challenges," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4289-4310, June.
    9. Patrik Thollander & Jenny Palm, 2015. "Industrial Energy Management Decision Making for Improved Energy Efficiency—Strategic System Perspectives and Situated Action in Combination," Energies, MDPI, vol. 8(6), pages 1-10, June.
    10. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.
    11. Abdullah Emre Keleş & Ecem Önen & Jarosław Górecki, 2022. "Determination of Green Building Awareness: A Study in Turkey," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    12. Jonas Friege & Georg Holtz & Emile Chappin, 2016. "Exploring Homeowners’ Insulation Activity," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-4.
    13. Altwies, Joy E. & Nemet, Gregory F., 2013. "Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology," Energy Policy, Elsevier, vol. 52(C), pages 819-831.
    14. Kangji Li & Lei Pan & Wenping Xue & Hui Jiang & Hanping Mao, 2017. "Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study," Energies, MDPI, vol. 10(2), pages 1-23, February.
    15. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions -- A Simulation-Based Case Study of a Single-Family House in Algeria and Germany," Papers 1904.11496, arXiv.org.
    16. Egging, Ruud, 2013. "Drivers, trends, and uncertainty in long-term price projections for energy management in public buildings," Energy Policy, Elsevier, vol. 62(C), pages 617-624.
    17. Maximilian Weigert & Oleksandr Melnyk & Leopold Winkler & Jacqueline Raab, 2022. "Carbon Emissions of Construction Processes on Urban Construction Sites," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
    18. Laura Kunz & Adrian Muller, 2010. "A case study on project-level CO2 mitigation costs in industrialised countries: the Climate Cent Foundation in Switzerland," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 53(5), pages 657-676.
    19. Heather Klemick & Elizabeth Kopits & Ann Wolverton, 2015. "The Energy Efficiency Paradox: A Case Study of Supermarket Refrigeration System Investment Decisions," NCEE Working Paper Series 201503, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jun 2015.
    20. Soršak, Marko & Leskovar, Vesna Žegarac & Premrov, Miroslav & Goričanec, Darko & Pšunder, Igor, 2014. "Economical optimization of energy-efficient timber buildings: Case study for single family timber house in Slovenia," Energy, Elsevier, vol. 77(C), pages 57-65.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbu:jrnlec:y:2022:v:4:p:298-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ecobici Nicolae The email address of this maintainer does not seem to be valid anymore. Please ask Ecobici Nicolae to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/fetgjro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.