IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p7245-d298920.html
   My bibliography  Save this article

A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability

Author

Listed:
  • Elena Stefana

    (Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy)

  • Paola Cocca

    (Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy)

  • Filippo Marciano

    (Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy)

  • Diana Rossi

    (Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy)

  • Giuseppe Tomasoni

    (Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy)

Abstract

Environmental impact and use of energy and materials are relevant topics in companies. To achieve energy savings and enhance environmental performance, managers can invest in technologies (technical measures) and/or implement management practices (low-cost and non-technical measures). This paper focuses on energy and environmental management practices in foundry, which is a particularly energy-intensive industry producing significant carbon dioxide emissions. We conducted a scoping review of scientific publications and technical documents to identify practices that enable energy efficiency improvement and adverse environmental impact reduction in cast iron foundries using coreless induction furnaces. The review returned 399 practices, which we categorised according to the process step of application and theme. We developed a hierarchy to classify the practices according to their sustainability. The results show that the practices proposed in the literature focus mainly on avoiding or reducing resource consumption, rather than on recovering residual value. The intended contribution is to promote the adoption of management practices as an effective lever to increase energy efficiency and reduce environmental impacts, while also providing a summary of current knowledge to facilitate the identification of areas for further research. The review could also support foundry managers in the selection and prioritisation of the practices to adopt.

Suggested Citation

  • Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7245-:d:298920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/7245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/7245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    2. Ates, Seyithan Ahmet & Durakbasa, Numan M., 2012. "Evaluation of corporate energy management practices of energy intensive industries in Turkey," Energy, Elsevier, vol. 45(1), pages 81-91.
    3. Yih-Liang Chan, David & Yang, Kuang-Han & Lee, Jenq-Daw & Hong, Gui-Bing, 2010. "The case study of furnace use and energy conservation in iron and steel industry," Energy, Elsevier, vol. 35(4), pages 1665-1670.
    4. Renato M. Lazzarin & Marco Noro, 2017. "Energy efficiency opportunities in the service plants of cast iron foundries in Italy," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 96-109.
    5. Kim, Yeonbae & Worrell, Ernst, 2002. "International comparison of CO2 emission trends in the iron and steel industry," Energy Policy, Elsevier, vol. 30(10), pages 827-838, August.
    6. Worrell, Ernst & Price, Lynn & Martin, Nathan & Farla, Jacco & Schaeffer, Roberto, 1997. "Energy intensity in the iron and steel industry: a comparison of physical and economic indicators," Energy Policy, Elsevier, vol. 25(7-9), pages 727-744.
    7. Yang, Ma Ga (Mark) & Hong, Paul & Modi, Sachin B., 2011. "Impact of lean manufacturing and environmental management on business performance: An empirical study of manufacturing firms," International Journal of Production Economics, Elsevier, vol. 129(2), pages 251-261, February.
    8. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    9. Cagno, Enrico & Ramirez-Portilla, Andres & Trianni, Andrea, 2015. "Linking energy efficiency and innovation practices: Empirical evidence from the foundry sector," Energy Policy, Elsevier, vol. 83(C), pages 240-256.
    10. Thollander, Patrik & Mardan, Nawzad & Karlsson, Magnus, 2009. "Optimization as investment decision support in a Swedish medium-sized iron foundry - A move beyond traditional energy auditing," Applied Energy, Elsevier, vol. 86(4), pages 433-440, April.
    11. Schleich, Joachim, 2009. "Barriers to energy efficiency: A comparison across the German commercial and services sector," Ecological Economics, Elsevier, vol. 68(7), pages 2150-2159, May.
    12. Lee, Dasheng & Cheng, Chin-Chi, 2016. "Energy savings by energy management systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 760-777.
    13. Thollander, Patrik & Karlsson, Magnus & Söderström, Mats & Creutz, Dan, 2005. "Reducing industrial energy costs through energy-efficiency measures in a liberalized European electricity market: case study of a Swedish iron foundry," Applied Energy, Elsevier, vol. 81(2), pages 115-126, June.
    14. Rohdin, Patrik & Thollander, Patrik & Solding, Petter, 2007. "Barriers to and drivers for energy efficiency in the Swedish foundry industry," Energy Policy, Elsevier, vol. 35(1), pages 672-677, January.
    15. Giacone, E. & Mancò, S., 2012. "Energy efficiency measurement in industrial processes," Energy, Elsevier, vol. 38(1), pages 331-345.
    16. Mardan, Nawzad & Klahr, Roger, 2012. "Combining optimisation and simulation in an energy systems analysis of a Swedish iron foundry," Energy, Elsevier, vol. 44(1), pages 410-419.
    17. Saygin, D. & Worrell, E. & Patel, M.K. & Gielen, D.J., 2011. "Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries," Energy, Elsevier, vol. 36(11), pages 6661-6673.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohua Song & Caiping Zhao & Jingjing Han & Qi Zhang & Jinpeng Liu & Yuanying Chi, 2020. "Measurement and Influencing Factors Research of the Energy and Power Efficiency in China: Based on the Supply-Side Structural Reform Perspective," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
    2. Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, vol. 13(19), pages 1-34, September.
    3. Michael Felix Pacevicius & Marilia Ramos & Davide Roverso & Christian Thun Eriksen & Nicola Paltrinieri, 2022. "Managing Heterogeneous Datasets for Dynamic Risk Analysis of Large-Scale Infrastructures," Energies, MDPI, vol. 15(9), pages 1-40, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    2. Noor Jalo & Ida Johansson & Mariana Andrei & Therese Nehler & Patrik Thollander, 2021. "Barriers to and Drivers of Energy Management in Swedish SMEs," Energies, MDPI, vol. 14(21), pages 1-21, October.
    3. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    4. May, Gökan & Stahl, Bojan & Taisch, Marco, 2016. "Energy management in manufacturing: Toward eco-factories of the future – A focus group study," Applied Energy, Elsevier, vol. 164(C), pages 628-638.
    5. Alexander Melnik & Kirill Ermolaev, 2020. "Strategy Context of Decision Making for Improved Energy Efficiency in Industrial Energy Systems," Energies, MDPI, vol. 13(7), pages 1-28, March.
    6. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    7. Vichan Nakthong & Kuskana Kubaha, 2019. "Development of a Sustainability Index for an Energy Management System in Thailand," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    8. Aida Sa & Patrik Thollander & Enrico Cagno & Majid Rafiee, 2018. "Assessing Swedish Foundries Energy Management Program," Energies, MDPI, vol. 11(10), pages 1-13, October.
    9. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    10. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    11. Pusnik, Matevz & Al-Mansour, Fouad & Sucic, Boris & Gubina, A.F., 2016. "Gap analysis of industrial energy management systems in Slovenia," Energy, Elsevier, vol. 108(C), pages 41-49.
    12. Herrera, Bernardo & Amell, Andrés & Chejne, Farid & Cacua, Karen & Manrique, Raiza & Henao, Wilson & Vallejo, Gabriel, 2017. "Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia," Energy, Elsevier, vol. 140(P1), pages 1047-1058.
    13. Leonardo Leoni & Alessandra Cantini & Filippo De Carlo & Marcello Salvio & Chiara Martini & Claudia Toro & Fabrizio Martini, 2021. "Energy-Saving Technology Opportunities and Investments of the Italian Foundry Industry," Energies, MDPI, vol. 14(24), pages 1-29, December.
    14. Paramonova, Svetlana & Thollander, Patrik, 2016. "Energy-efficiency networks for SMEs: Learning from the Swedish experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 295-307.
    15. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    16. A. S. M. Monjurul Hasan & Rakib Hossain & Rashedul Amin Tuhin & Taiyeb Hasan Sakib & Patrik Thollander, 2019. "Empirical Investigation of Barriers and Driving Forces for Efficient Energy Management Practices in Non-Energy-Intensive Manufacturing Industries of Bangladesh," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    17. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    18. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    19. Fernando, Yudi & Bee, Poh Swan & Jabbour, Charbel Jose Chiappetta & Thomé, Antônio Márcio Tavares, 2018. "Understanding the effects of energy management practices on renewable energy supply chains: Implications for energy policy in emerging economies," Energy Policy, Elsevier, vol. 118(C), pages 418-428.
    20. Thollander, P. & Svensson, I.L. & Trygg, L., 2010. "Analyzing variables for district heating collaborations between energy utilities and industries," Energy, Elsevier, vol. 35(9), pages 3649-3656.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7245-:d:298920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.