IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3161-d802601.html
   My bibliography  Save this article

Managing Heterogeneous Datasets for Dynamic Risk Analysis of Large-Scale Infrastructures

Author

Listed:
  • Michael Felix Pacevicius

    (Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology NTNU, Richard Birkelands vei 2B, 7034 Trondheim, Norway
    Analytics Department, eSmart Systems, Håkon Melbergs vei 16, 1783 Halden, Norway)

  • Marilia Ramos

    (The B. John Garrick Institute for the Risk Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA)

  • Davide Roverso

    (Analytics Department, eSmart Systems, Håkon Melbergs vei 16, 1783 Halden, Norway)

  • Christian Thun Eriksen

    (Architecture Development Department, eSmart Systems, Håkon Melbergs vei 16, 1783 Halden, Norway)

  • Nicola Paltrinieri

    (Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology NTNU, Richard Birkelands vei 2B, 7034 Trondheim, Norway)

Abstract

Risk assessment and management are some of the major tasks of urban power-grid management. The growing amount of data from, e.g., prediction systems, sensors, and satellites has enabled access to numerous datasets originating from a diversity of heterogeneous data sources. While these advancements are of great importance for more accurate and trustable risk analyses, there is no guidance on selecting the best information available for power-grid risk analysis. This paper addresses this gap on the basis of existing standards in risk assessment. The key contributions of this research are twofold. First, it proposes a method for reinforcing data-related risk analysis steps. The use of this method ensures that risk analysts will methodically identify and assess the available data for informing the risk analysis key parameters. Second, it develops a method (named the three-phases method ) based on metrology for selecting the best datasets according to their informative potential. The method, thus, formalizes, in a traceable and reproducible manner, the process for choosing one dataset to inform a parameter in detriment of another, which can lead to more accurate risk analyses. The method is applied to a case study of vegetation-related risk analysis in power grids, a common challenge faced by power-grid operators. The application demonstrates that a dataset originating from an initially less valued data source may be preferred to a dataset originating from a higher-ranked data source, the content of which is outdated or of too low quality. The results confirm that the method enables a dynamic optimization of dataset selection upfront of any risk analysis, supporting the application of dynamic risk analyses in real-case scenarios.

Suggested Citation

  • Michael Felix Pacevicius & Marilia Ramos & Davide Roverso & Christian Thun Eriksen & Nicola Paltrinieri, 2022. "Managing Heterogeneous Datasets for Dynamic Risk Analysis of Large-Scale Infrastructures," Energies, MDPI, vol. 15(9), pages 1-40, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3161-:d:802601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3161/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3161/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Sayed & M. El-Shimy & M. El-Metwally & M. Elshahed, 2019. "Reliability, Availability and Maintainability Analysis for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 12(7), pages 1-18, March.
    2. Emanuele Borgonovo, 2017. "Value of Information," International Series in Operations Research & Management Science, in: Sensitivity Analysis, chapter 0, pages 93-100, Springer.
    3. Nima Khakzad & Sina Khakzad & Faisal Khan, 2014. "Probabilistic risk assessment of major accidents: application to offshore blowouts in the Gulf of Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1759-1771, December.
    4. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    5. Andrés A. Zúñiga & Alexandre Baleia & João Fernandes & Paulo Jose Da Costa Branco, 2020. "Classical Failure Modes and Effects Analysis in the Context of Smart Grid Cyber-Physical Systems," Energies, MDPI, vol. 13(5), pages 1-26, March.
    6. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2012. "Dynamic risk analysis using bow-tie approach," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 36-44.
    7. Shenae Lee & Gabriele Landucci & Genserik Reniers & Nicola Paltrinieri, 2019. "Validation of Dynamic Risk Analysis Supporting Integrated Operations Across Systems," Sustainability, MDPI, vol. 11(23), pages 1-25, November.
    8. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    9. Xing, Jinduo & Zeng, Zhiguo & Zio, Enrico, 2019. "A framework for dynamic risk assessment with condition monitoring data and inspection data," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Hassan Haes Alhelou & Mohamad Esmail Hamedani-Golshan & Takawira Cuthbert Njenda & Pierluigi Siano, 2019. "A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges," Energies, MDPI, vol. 12(4), pages 1-28, February.
    11. Kathleen Burnett & Kwong Bor Ng & Soyeon Park, 1999. "A comparison of the two traditions of metadata development," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 50(13), pages 1209-1217.
    12. Jeusfeld, M.A. & Quix, C. & Jarke, M., 1998. "Design and analysis of quality information for data warehouses," Other publications TiSEM fde64335-eb29-4c82-b7c8-5, Tilburg University, School of Economics and Management.
    13. Nicola Paltrinieri & Faisal Khan & Valerio Cozzani, 2015. "Coupling of advanced techniques for dynamic risk management," Journal of Risk Research, Taylor & Francis Journals, vol. 18(7), pages 910-930, August.
    14. Zhe Zhang & Hang Yang & Xianggen Yin & Jiexiang Han & Yong Wang & Guoyan Chen, 2018. "A Load-Shedding Model Based on Sensitivity Analysis in on-Line Power System Operation Risk Assessment," Energies, MDPI, vol. 11(4), pages 1-17, March.
    15. Aven, Terje & Krohn, Bodil S., 2014. "A new perspective on how to understand, assess and manage risk and the unforeseen," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 1-10.
    16. G. V. Brahmendra Kumar & Ratnam Kamala Sarojini & K. Palanisamy & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Large Scale Renewable Energy Integration: Issues and Solutions," Energies, MDPI, vol. 12(10), pages 1-17, May.
    17. Emanuele Borgonovo & Alessandra Cillo, 2017. "Deciding with Thresholds: Importance Measures and Value of Information," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1828-1848, October.
    18. Robin L. Dillon & M. Elisabeth Paté-Cornell & Seth D. Guikema, 2003. "Programmatic Risk Analysis for Critical Engineering Systems Under Tight Resource Constraints," Operations Research, INFORMS, vol. 51(3), pages 354-370, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emanuele Borgonovo & Alessandra Cillo & Curtis L. Smith, 2018. "On the Relationship between Safety and Decision Significance," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1541-1558, August.
    2. Alsulieman, Abdullah & Ge, Xihe & Zeng, Zhiguo & Butenko, Sergiy & Khan, Faisal & El-Halwagi, Mahmoud, 2024. "Dynamic risk analysis of evolving scenarios in oil and gas separator," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    4. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    5. Emanuele Borgonovo & William Castaings & Stefano Tarantola, 2011. "Moment Independent Importance Measures: New Results and Analytical Test Cases," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 404-428, March.
    6. Zhu, Xiaoyan & Chen, Zhiqiang & Borgonovo, Emanuele, 2021. "Remaining-useful-lifetime and system-remaining-profit based importance measures for decisions on preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Emanuele Borgonovo & Alessandra Cillo, 2017. "Deciding with Thresholds: Importance Measures and Value of Information," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1828-1848, October.
    8. Nikolaos P Ventikos & Konstantinos Louzis, 2023. "Developing next generation marine risk analysis for ships: Bio-inspiration for building immunity," Journal of Risk and Reliability, , vol. 237(2), pages 405-424, April.
    9. Christoph Werner & Tim Bedford & John Quigley, 2018. "Sequential Refined Partitioning for Probabilistic Dependence Assessment," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2683-2702, December.
    10. Torbjørn Bjerga & Terje Aven, 2016. "Some perspectives on risk management: A security case study from the oil and gas industry," Journal of Risk and Reliability, , vol. 230(5), pages 512-520, October.
    11. Xianzhen Huang & Frank PA Coolen, 2018. "Reliability sensitivity analysis of coherent systems based on survival signature," Journal of Risk and Reliability, , vol. 232(6), pages 627-634, December.
    12. Zou, Guang & Faber, Michael Havbro & González, Arturo & Banisoleiman, Kian, 2021. "Computing the value of information from periodic testing in holistic decision making under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    13. Taleb-Berrouane, Mohammed & Khan, Faisal & Hawboldt, Kelly, 2021. "Corrosion risk assessment using adaptive bow-tie (ABT) analysis," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    14. Xiaoxia Liang & Fang Duan & Ian Bennett & David Mba, 2020. "A Comprehensive Health Indicator Integrated by the Dynamic Risk Profile from Condition Monitoring Data and the Function of Financial Losses," Energies, MDPI, vol. 14(1), pages 1-25, December.
    15. Robin L. Dillon & M. Elisabeth Paté‐Cornell, 2005. "Including technical and security risks in the management of information systems: A programmatic risk management model," Systems Engineering, John Wiley & Sons, vol. 8(1), pages 15-28.
    16. Straub, Daniel & Ehre, Max & Papaioannou, Iason, 2022. "Decision-theoretic reliability sensitivity," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    17. Mohammad Yazdi, 2019. "A review paper to examine the validity of Bayesian network to build rational consensus in subjective probabilistic failure analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(1), pages 1-18, February.
    18. Christine L. Berner & Andrea Staid & Roger Flage & Seth D. Guikema, 2017. "The Use of Simulation to Reduce the Domain of “Black Swans” with Application to Hurricane Impacts to Power Systems," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1879-1897, October.
    19. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Thai, Vinh V., 2021. "An Operational Risk Analysis Model for Container Shipping Systems considering Uncertainty Quantification," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    20. Fissler, Tobias & Pesenti, Silvana M., 2023. "Sensitivity measures based on scoring functions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1408-1423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3161-:d:802601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.