IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7703-d415234.html
   My bibliography  Save this article

Drivers and Barriers for Efficient Energy Management Practices in Energy-Intensive Industries: A Case-Study of Iron and Steel Sector

Author

Listed:
  • Iftikhar Ahmad

    (Department of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan)

  • Muhammad Salman Arif

    (Department of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan)

  • Izzat Iqbal Cheema

    (Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus) 39021, Pakistan
    Center for Energy Research and Development (CERAD), University of Engineering and Technology, Lahore (New Campus) 39021, Pakistan)

  • Patrik Thollander

    (Department of Mechanical Engineering, Division of Energy Systems, Linköping University, 58183 Linköping, Sweden)

  • Masroor Ahmed Khan

    (United Nations Industrial Development Organization, Serena Business Complex Khayaban-e-Suhrawardy, Islamabad 44000, Pakistan)

Abstract

The two major reasons behind the world’s energy crisis are losses in energy transmission and less efficient energy use at sinks. The former flaw can be catered by changing the entire energy transmission system which requires investment and planning on a large scale, whereas the later deficiency can be overcome through proper management of energy utilizing systems. Energy-intensive industries have a substantial share in energy consumption and equally high energy saving potentials if they adopt some integrated and improved energy efficiency. This study investigates the energy management systems in the iron and steel sector of Pakistan, and compare it with findings of similar work in Sweden, Bangladesh, and Ghana. A systematic questionnaire was circulated in the iron and steel sector across the country and afterward the collected data was analyzed to find major barriers and drivers for efficient energy management practices. In addition, questions on non-energy benefits and information sources relevant to the energy efficiency were also part of the questionnaire. Cost reduction resulting from lowered energy use was rated as the most important driver for applying energy-efficient operation. On the other hand, the cost of production disruption was considered among high-level barriers to the implementation of improved energy efficiency. An increase in the life-time of equipment was labeled as the top non-energy benefits. Company peers and seminars/conferences were referred as the best information sources related to energy efficiency. The outcome of the study will be helpful to the decision-maker in the industry, as well as the government levels.

Suggested Citation

  • Iftikhar Ahmad & Muhammad Salman Arif & Izzat Iqbal Cheema & Patrik Thollander & Masroor Ahmed Khan, 2020. "Drivers and Barriers for Efficient Energy Management Practices in Energy-Intensive Industries: A Case-Study of Iron and Steel Sector," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7703-:d:415234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, Mumtaz & Azam, Muhammad, 2016. "Causal nexus between energy consumption and economic growth for high, middle and low income countries using frequency domain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 653-678.
    2. Worrell, Ernst & Martin, Nathan & Price, Lynn, 2000. "Potentials for energy efficiency improvement in the US cement industry," Energy, Elsevier, vol. 25(12), pages 1189-1214.
    3. Rehana Siddiqui & Hafiz Hanzla Jalil & Muhammad Nasir & Wasim Shahid Malik & Mahmood Khalid, 2008. "The Cost of Unserved Energy: Evidence from Selected Industrial Cities of Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(3), pages 227-246.
    4. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    5. Rafique, M. Mujahid & Rehman, S., 2017. "National energy scenario of Pakistan – Current status, future alternatives, and institutional infrastructure: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 156-167.
    6. Thollander, Patrik & Kimura, Osamu & Wakabayashi, Masayo & Rohdin, Patrik, 2015. "A review of industrial energy and climate policies in Japan and Sweden with emphasis towards SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 504-512.
    7. Qazi Muhammad Adnan Hye & Sana Riaz, 2008. "Causality between Energy Consumption and Economic Growth: The Case of Pakistan," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 13(2), pages 45-58, Jul-Dec.
    8. Yang, Ming, 2006. "Energy efficiency policy impact in India: case study of investment in industrial energy efficiency," Energy Policy, Elsevier, vol. 34(17), pages 3104-3114, November.
    9. Rajat Kumar Panigrahy & Ashok Kumar Panda & Srikanta Patnaik, 2011. "Automation of energy management system in Rourkela steel plant: a case study," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 7(5/6), pages 417-432.
    10. Fleiter, Tobias & Schleich, Joachim & Ravivanpong, Ployplearn, 2012. "Adoption of energy-efficiency measures in SMEs—An empirical analysis based on energy audit data from Germany," Energy Policy, Elsevier, vol. 51(C), pages 863-875.
    11. Rohdin, Patrik & Thollander, Patrik & Solding, Petter, 2007. "Barriers to and drivers for energy efficiency in the Swedish foundry industry," Energy Policy, Elsevier, vol. 35(1), pages 672-677, January.
    12. Therese Nehler, 2018. "A Systematic Literature Review of Methods for Improved Utilisation of the Non-Energy Benefits of Industrial Energy Efficiency," Energies, MDPI, vol. 11(12), pages 1-27, November.
    13. Apriani Soepardi & Patrik Thollander, 2018. "Analysis of Relationships among Organizational Barriers to Energy Efficiency Improvement: A Case Study in Indonesia’s Steel Industry," Sustainability, MDPI, vol. 10(1), pages 1-13, January.
    14. Tobias Fleitera & Joachim Schleich & Ployplearn Ravivanpong, 2012. "Adoption of energy-efficiency measures in SMEs - An empirical analysis based on energy audit data," Grenoble Ecole de Management (Post-Print) hal-00805748, HAL.
    15. Zeb, K. & Ali, S.M. & Khan, B. & Mehmood, C.A. & Tareen, N. & Din, W. & Farid, U. & Haider, A., 2017. "A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1142-1155.
    16. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    17. Mirjat, Nayyar Hussain & Uqaili, Mohammad Aslam & Harijan, Khanji & Valasai, Gordhan Das & Shaikh, Faheemullah & Waris, M., 2017. "A review of energy and power planning and policies of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 110-127.
    18. Ahmed, Mumtaz & Riaz, Khalid & Maqbool Khan, Atif & Bibi, Salma, 2015. "Energy consumption–economic growth nexus for Pakistan: Taming the untamed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 890-896.
    19. Khalid Latif & Muhammad Yousaf Raza & Chaudhary, Ghulam Mujtaba & Adeel Arshad, 2020. "Analysis of Energy Crisis, Energy Security and Potential of Renewable Energy: Evidence from Pakistan," Journal of Accounting and Finance in Emerging Economies, CSRC Publishing, Center for Sustainability Research and Consultancy Pakistan, vol. 6(1), pages 167-182, March.
    20. Worrell, Ernst & Price, Lynn & Martin, Nathan, 2001. "Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector," Energy, Elsevier, vol. 26(5), pages 513-536.
    21. Aslam, Waleed & Soban, Muhammad & Akhtar, Farwa & Zaffar, Nauman A., 2015. "Smart meters for industrial energy conservation and efficiency optimization in Pakistan: Scope, technology and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 933-943.
    22. Ates, Seyithan Ahmet & Durakbasa, Numan M., 2012. "Evaluation of corporate energy management practices of energy intensive industries in Turkey," Energy, Elsevier, vol. 45(1), pages 81-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelly M. Smith & Stephen Wilson & Paul Lant & Maureen E. Hassall, 2022. "How Do We Learn about Drivers for Industrial Energy Efficiency—Current State of Knowledge," Energies, MDPI, vol. 15(7), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monjurul Hasan, A S M & Trianni, Andrea & Shukla, Nagesh & Katic, Mile, 2022. "A novel characterization based framework to incorporate industrial energy management services," Applied Energy, Elsevier, vol. 313(C).
    2. Noor Jalo & Ida Johansson & Mariana Andrei & Therese Nehler & Patrik Thollander, 2021. "Barriers to and Drivers of Energy Management in Swedish SMEs," Energies, MDPI, vol. 14(21), pages 1-21, October.
    3. Herrera, Bernardo & Amell, Andrés & Chejne, Farid & Cacua, Karen & Manrique, Raiza & Henao, Wilson & Vallejo, Gabriel, 2017. "Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia," Energy, Elsevier, vol. 140(P1), pages 1047-1058.
    4. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    5. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    6. Backlund, Sandra & Thollander, Patrik, 2015. "Impact after three years of the Swedish energy audit program," Energy, Elsevier, vol. 82(C), pages 54-60.
    7. Stavros Gennitsaris & Miguel Castro Oliveira & George Vris & Antonis Bofilios & Theodora Ntinou & Ana Rita Frutuoso & Catarina Queiroga & John Giannatsis & Stella Sofianopoulou & Vassilis Dedoussis, 2023. "Energy Efficiency Management in Small and Medium-Sized Enterprises: Current Situation, Case Studies and Best Practices," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    8. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    9. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    10. Schlomann, Barbara & Schleich, Joachim, 2015. "Adoption of low-cost energy efficiency measures in the tertiary sector—An empirical analysis based on energy survey data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1127-1133.
    11. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    12. Kalantzis, Fotios & Revoltella, Debora, 2019. "How energy audits promote SMEs' energy efficiency investment," EIB Working Papers 2019/02, European Investment Bank (EIB).
    13. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    14. Löschel, Andreas & Lutz, Benjamin Johannes & Massier, Philipp, 2017. "Credit constraints, energy management practices, and investments in energy saving technologies: German manufacturing in close-up," ZEW Discussion Papers 17-072, ZEW - Leibniz Centre for European Economic Research.
    15. Joakim Haraldsson & Maria T. Johansson, 2019. "Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    16. Zhang, Dayong & Li, Jun & Ji, Qiang, 2020. "Does better access to credit help reduce energy intensity in China? Evidence from manufacturing firms," Energy Policy, Elsevier, vol. 145(C).
    17. Trianni, Andrea & Cagno, Enrico & Bertolotti, Matteo & Thollander, Patrik & Andersson, Elias, 2019. "Energy management: A practice-based assessment model," Applied Energy, Elsevier, vol. 235(C), pages 1614-1636.
    18. Andersson, Elias & Karlsson, Magnus & Thollander, Patrik & Paramonova, Svetlana, 2018. "Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 165-177.
    19. Jose García-Quevedo & Xavier Massa-Camps, 2019. "Why firms invest (or not) in energy efficiency? A review of the econometric evidence," Working Papers 2019/07, Institut d'Economia de Barcelona (IEB).
    20. Olsthoorn, Mark & Schleich, Joachim & Klobasa, Marian, 2015. "Barriers to electricity load shift in companies: A survey-based exploration of the end-user perspective," Energy Policy, Elsevier, vol. 76(C), pages 32-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7703-:d:415234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.