IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v258y2022ics0360544222017133.html
   My bibliography  Save this article

Fine-tuning energy efficiency subsidies allocation for maximum savings in residential buildings

Author

Listed:
  • Siddique, Muhammad Bilal
  • Bergaentzlé, Claire
  • Gunkel, Philipp Andreas

Abstract

Energy consumption in buildings accounts for more than a third of European CO2 emissions. The existing building stock shows the most potential for energy savings but at the expense of costly renovations. Thus, public intervention is decisive in driving transformation in this sector. However, policymakers mostly rely on heat estimates to develop energy-saving policies, limiting the possibility of aligning renovation support policy with environmental gain, slowing down the decarbonization effort. This study explores the benefits of using metered heat demand data with detailed building archetypes for impactful renovation subsidy allocation. We quantify the missed CO2 emissions due to inaccuracies in heat demand estimates and develop an optimization model to quantify the impact of such inaccuracies on subsidy allocation. For the case study of Lyngby-Taarbæk municipality in Denmark, we find systematic bias in heat demand estimates that attribute higher heat demand to older houses than reality and inversely to newer family houses. Such bias results in the misallocation of 39% of total CO2 emissions and distortion of 40% of the total subsidy. Ultimately, our results help policymakers identify buildings that should be prioritized for a maximum decarbonization impact.

Suggested Citation

  • Siddique, Muhammad Bilal & Bergaentzlé, Claire & Gunkel, Philipp Andreas, 2022. "Fine-tuning energy efficiency subsidies allocation for maximum savings in residential buildings," Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017133
    DOI: 10.1016/j.energy.2022.124810
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222017133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petrović, Stefan N. & Karlsson, Kenneth B., 2016. "Residential heat pumps in the future Danish energy system," Energy, Elsevier, vol. 114(C), pages 787-797.
    2. Andreas Müller & Marcus Hummel & Lukas Kranzl & Mostafa Fallahnejad & Richard Büchele, 2019. "Open Source Data for Gross Floor Area and Heat Demand Density on the Hectare Level for EU 28," Energies, MDPI, vol. 12(24), pages 1-25, December.
    3. Gils, Hans Christian & Cofala, Janusz & Wagner, Fabian & Schöpp, Wolfgang, 2013. "GIS-based assessment of the district heating potential in the USA," Energy, Elsevier, vol. 58(C), pages 318-329.
    4. Risch, Anna, 2020. "Are environmental fiscal incentives effective in inducing energy-saving renovations? An econometric evaluation of the French energy tax credit," Energy Economics, Elsevier, vol. 90(C).
    5. Xu, Yuanjin & Li, Fei & Asgari, Armin, 2022. "Prediction and optimization of heating and cooling loads in a residential building based on multi-layer perceptron neural network and different optimization algorithms," Energy, Elsevier, vol. 240(C).
    6. Zhang, Zhaoyan & Wang, Peiguang & Jiang, Ping & Liu, Zhiheng & Fu, Lei, 2022. "Energy management of ultra-short-term optimal scheduling of integrated energy system considering the characteristics of heating network," Energy, Elsevier, vol. 240(C).
    7. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    8. Kristensen, Martin Heine & Hedegaard, Rasmus Elbæk & Petersen, Steffen, 2020. "Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling," Energy, Elsevier, vol. 201(C).
    9. Bhattacharyya, Subhes C. & Timilsina, Govinda R., 2009. "Energy demand models for policy formulation : a comparative study of energy demand models," Policy Research Working Paper Series 4866, The World Bank.
    10. Oikonomou, V. & Becchis, F. & Steg, L. & Russolillo, D., 2009. "Energy saving and energy efficiency concepts for policy making," Energy Policy, Elsevier, vol. 37(11), pages 4787-4796, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gunkel, Philipp Andreas & Kachirayil, Febin & Bergaentzlé, Claire-Marie & McKenna, Russell & Keles, Dogan & Jacobsen, Henrik Klinge, 2023. "Uniform taxation of electricity: incentives for flexibility and cost redistribution among household categories," Energy Economics, Elsevier, vol. 127(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Porse, Erik & Derenski, Joshua & Gustafson, Hannah & Elizabeth, Zoe & Pincetl, Stephanie, 2016. "Structural, geographic, and social factors in urban building energy use: Analysis of aggregated account-level consumption data in a megacity," Energy Policy, Elsevier, vol. 96(C), pages 179-192.
    2. Theofano Fotiou & Alessia de Vita & Pantelis Capros, 2019. "Economic-Engineering Modelling of the Buildings Sector to Study the Transition towards Deep Decarbonisation in the EU," Energies, MDPI, vol. 12(14), pages 1-28, July.
    3. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Peng, Jieyang & Kimmig, Andreas & Niu, Zhibin & Wang, Jiahai & Liu, Xiufeng & Ovtcharova, Jivka, 2021. "A flexible potential-flow model based high resolution spatiotemporal energy demand forecasting framework," Applied Energy, Elsevier, vol. 299(C).
    5. Spandagos, Constantine & Baark, Erik & Ng, Tze Ling & Yarime, Masaru, 2021. "Social influence and economic intervention policies to save energy at home: Critical questions for the new decade and evidence from air-condition use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Malte Schwanebeck & Marcus Krüger & Rainer Duttmann, 2021. "Improving GIS-Based Heat Demand Modelling and Mapping for Residential Buildings with Census Data Sets at Regional and Sub-Regional Scales," Energies, MDPI, vol. 14(4), pages 1-18, February.
    7. Ozarisoy, B. & Altan, H., 2022. "Significance of occupancy patterns and habitual household adaptive behaviour on home-energy performance of post-war social-housing estate in the South-eastern Mediterranean climate: Energy policy desi," Energy, Elsevier, vol. 244(PB).
    8. Eggimann, Sven & Hall, Jim W. & Eyre, Nick, 2019. "A high-resolution spatio-temporal energy demand simulation to explore the potential of heating demand side management with large-scale heat pump diffusion," Applied Energy, Elsevier, vol. 236(C), pages 997-1010.
    9. Javid, Muhammad & Khan, Farzana Naheed & Arif, Umaima, 2022. "Income and price elasticities of natural gas demand in Pakistan: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
    10. Sánchez-García, Luis & Averfalk, Helge & Möllerström, Erik & Persson, Urban, 2023. "Understanding effective width for district heating," Energy, Elsevier, vol. 277(C).
    11. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    12. Heinen, Steve & Turner, William & Cradden, Lucy & McDermott, Frank & O'Malley, Mark, 2017. "Electrification of residential space heating considering coincidental weather events and building thermal inertia: A system-wide planning analysis," Energy, Elsevier, vol. 127(C), pages 136-154.
    13. Khan, Muhammad Arshad, 2015. "Modelling and forecasting the demand for natural gas in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1145-1159.
    14. Lopes, M.A.R. & Antunes, C.H. & Martins, N., 2012. "Energy behaviours as promoters of energy efficiency: A 21st century review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4095-4104.
    15. Adeoye, Omotola & Spataru, Catalina, 2019. "Modelling and forecasting hourly electricity demand in West African countries," Applied Energy, Elsevier, vol. 242(C), pages 311-333.
    16. Lillemo, Shuling Chen, 2014. "Measuring the effect of procrastination and environmental awareness on households' energy-saving behaviours: An empirical approach," Energy Policy, Elsevier, vol. 66(C), pages 249-256.
    17. Azevedo, I. & Leal, V., 2021. "A new model for ex-post quantification of the effects of local actions for climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    19. Dominique Osso & Stanislas Nösperger & Maxime Raynaud & Marie-Hélène Laurent & Catherine Grandclément & Aurelie Tricoire, 2017. "The structuring of air source heat pumps' prices in a retrofitting residential buildings market: what did I pay for?," Post-Print hal-02153845, HAL.
    20. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.