IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v93y2018icp16-26.html
   My bibliography  Save this article

Pre-treatment methods for production of biofuel from microalgae biomass

Author

Listed:
  • Onumaegbu, C.
  • Mooney, J.
  • Alaswad, A.
  • Olabi, A.G.

Abstract

Microalgae biofuel is one of the most promising renewable energy sources that can contribute to the replacement of fossil fuels globally because of its sustainability and its ability to reduce the carbon dioxide emission in the atmosphere. However, the rigidity of microalgae of microalgae cell wall inhibits the extraction of lipids for biofuel production. To improve microalgae biofuel production, different pre-treatment techniques have been studied to evaluate their effectiveness on microalgae cell wall disruption. The main objective of this paper is to review the different pre-treatment technologies used in biofuel production from microalgae biomass and to critically discuss the current limitations and promising perspectives towards achieving economic and industrial scale production. Pre-treatment methods reviewed are categorized into mechanical techniques (e.g. high-pressure homogenizer and bead mills), physical techniques (e.g. ultrasonic and microwave methods), thermal pre-treatment techniques (e.g. autoclave and steam explosion), chemical techniques (e.g. catalytic and enzymatic), and combined techniques. Furthermore, comparisons of these techniques are discussed. The overall effect of the applications and methods on biofuel production together with energy consumption are critically examined.

Suggested Citation

  • Onumaegbu, C. & Mooney, J. & Alaswad, A. & Olabi, A.G., 2018. "Pre-treatment methods for production of biofuel from microalgae biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 16-26.
  • Handle: RePEc:eee:rensus:v:93:y:2018:i:c:p:16-26
    DOI: 10.1016/j.rser.2018.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118302259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Yujie & Song, Kaihui & Zhang, Peidong & Su, Yuqing & Cheng, Jing & Chen, Xiao, 2017. "Progress of microalgae biofuel’s commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 402-411.
    2. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Microwave irradiation: A sustainable way for sludge treatment and resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 288-305.
    3. Florentino de Souza Silva, Anna Patrícya & Costa, Mayara Carantino & Colzi Lopes, Alexandre & Fares Abdala Neto, Eliezer & Carrhá Leitão, Renato & Mota, César Rossas & Bezerra dos Santos, André, 2014. "Comparison of pretreatment methods for total lipids extraction from mixed microalgae," Renewable Energy, Elsevier, vol. 63(C), pages 762-766.
    4. Li, Yuesong & Lian, Shuang & Tong, Dongmei & Song, Ruili & Yang, Wenyan & Fan, Yong & Qing, Renwei & Hu, Changwei, 2011. "One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst," Applied Energy, Elsevier, vol. 88(10), pages 3313-3317.
    5. Alaswad, A. & Dassisti, M. & Prescott, T. & Olabi, A.G., 2015. "Technologies and developments of third generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1446-1460.
    6. Chen, Kang-Shin & Lin, Yuan-Chung & Hsu, Kuo-Hsiang & Wang, Hsin-Kai, 2012. "Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system," Energy, Elsevier, vol. 38(1), pages 151-156.
    7. Clarke, A. & Prescott, T. & Khan, A. & Olabi, A.G., 2010. "Causes of breakage and disruption in a homogeniser," Applied Energy, Elsevier, vol. 87(12), pages 3680-3690, December.
    8. Ling, Jiayin & Nip, Saiwa & de Toledo, Renata Alves & Tian, Yuan & Shim, Hojae, 2016. "Evaluation of specific lipid production and nutrients removal from wastewater by Rhodosporidium toruloides and biodiesel production from wet biomass via microwave irradiation," Energy, Elsevier, vol. 108(C), pages 185-194.
    9. Joshi, Girdhar & Pandey, Jitendra K. & Rana, Sravendra & Rawat, Devendra S., 2017. "Challenges and opportunities for the application of biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 850-866.
    10. Passos, Fabiana & Solé, Maria & García, Joan & Ferrer, Ivet, 2013. "Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment," Applied Energy, Elsevier, vol. 108(C), pages 168-175.
    11. Samarasinghe, Nalin & Fernando, Sandun & Lacey, Ronald & Faulkner, William Brock, 2012. "Algal cell rupture using high pressure homogenization as a prelude to oil extraction," Renewable Energy, Elsevier, vol. 48(C), pages 300-308.
    12. Faried, M. & Samer, M. & Abdelsalam, E. & Yousef, R.S. & Attia, Y.A. & Ali, A.S., 2017. "Biodiesel production from microalgae: Processes, technologies and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 893-913.
    13. Resch, Gustav & Held, Anne & Faber, Thomas & Panzer, Christian & Toro, Felipe & Haas, Reinhard, 2008. "Potentials and prospects for renewable energies at global scale," Energy Policy, Elsevier, vol. 36(11), pages 4048-4056, November.
    14. Halim, Ronald & Harun, Razif & Danquah, Michael K. & Webley, Paul A., 2012. "Microalgal cell disruption for biofuel development," Applied Energy, Elsevier, vol. 91(1), pages 116-121.
    15. Cheng, Jay J. & Timilsina, Govinda R., 2011. "Status and barriers of advanced biofuel technologies: A review," Renewable Energy, Elsevier, vol. 36(12), pages 3541-3549.
    16. Tedesco, Silvia & Mac Lochlainn, Dubhaltach & Olabi, Abdul Ghani, 2014. "Particle size reduction optimization of Laminaria spp. biomass for enhanced methane production," Energy, Elsevier, vol. 76(C), pages 857-862.
    17. Amaro, Helena M. & Guedes, A. Catarina & Malcata, F. Xavier, 2011. "Advances and perspectives in using microalgae to produce biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3402-3410.
    18. Ekpeni, Leonard E.N. & Benyounis, K.Y. & Nkem-Ekpeni, Fehintola F. & Stokes, J. & Olabi, A.G., 2015. "Underlying factors to consider in improving energy yield from biomass source through yeast use on high-pressure homogenizer (hph)," Energy, Elsevier, vol. 81(C), pages 74-83.
    19. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
    20. Montingelli, M.E. & Tedesco, S. & Olabi, A.G., 2015. "Biogas production from algal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 961-972.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad, Gul & Alam, Md Asraful & Mofijur, M. & Jahirul, M.I. & Lv, Yongkun & Xiong, Wenlong & Ong, Hwai Chyuan & Xu, Jingliang, 2021. "Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    5. Hu, Yulin & Gong, Mengyue & Feng, Shanghuan & Xu, Chunbao (Charles) & Bassi, Amarjeet, 2019. "A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 476-492.
    6. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    7. Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Bahaa, Ahmed & Eisa, Tasnim & Alawadhi, Hussain & Al-Asheh, Sameer & Chae, Kyu-Jung & Olabi, A.G., 2021. "Synthesis and performance evaluation of various metal chalcogenides as active anodes for direct urea fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Onumaegbu, C. & Alaswad, A. & Rodriguez, C. & Olabi, A., 2019. "Modelling and optimization of wet microalgae Scenedesmus quadricauda lipid extraction using microwave pre-treatment method and response surface methodology," Renewable Energy, Elsevier, vol. 132(C), pages 1323-1331.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amarnath Krishnamoorthy & Cristina Rodriguez & Andy Durrant, 2022. "Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    2. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    3. Onumaegbu, C. & Alaswad, A. & Rodriguez, C. & Olabi, A., 2019. "Modelling and optimization of wet microalgae Scenedesmus quadricauda lipid extraction using microwave pre-treatment method and response surface methodology," Renewable Energy, Elsevier, vol. 132(C), pages 1323-1331.
    4. Chukwuma Onumaegbu & Abed Alaswad & Cristina Rodriguez & Abdul G. Olabi, 2018. "Optimization of Pre-Treatment Process Parameters to Generate Biodiesel from Microalga," Energies, MDPI, vol. 11(4), pages 1-16, March.
    5. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    6. Joshi, Girdhar & Pandey, Jitendra K. & Rana, Sravendra & Rawat, Devendra S., 2017. "Challenges and opportunities for the application of biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 850-866.
    7. Alaswad, A. & Dassisti, M. & Prescott, T. & Olabi, A.G., 2015. "Technologies and developments of third generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1446-1460.
    8. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    9. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    10. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    12. Neto, Ana Maria Pereira & Sotana de Souza, Rafael Augusto & Leon-Nino, Amanda Denisse & da Costa, Joana D'arc Aparecida & Tiburcio, Rodolfo Sbrolini & Nunes, Thaís Abreu & Sellare de Mello, Thaís Cris, 2013. "Improvement in microalgae lipid extraction using a sonication-assisted method," Renewable Energy, Elsevier, vol. 55(C), pages 525-531.
    13. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    14. Bai, Xue & Lant, Paul A. & Jensen, Paul D. & Astals, Sergi & Pratt, Steven, 2016. "Enhanced methane production from algal digestion using free nitrous acid pre-treatment," Renewable Energy, Elsevier, vol. 88(C), pages 383-390.
    15. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    16. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    17. Choi, Dongho & Oh, Jeong-Ik & Baek, Kitae & Lee, Jechan & Kwon, Eilhann E., 2018. "Compositional modification of products from Co-Pyrolysis of chicken manure and biomass by shifting carbon distribution from pyrolytic oil to syngas using CO2," Energy, Elsevier, vol. 153(C), pages 530-538.
    18. Salam, Kamoru A. & Velasquez-Orta, Sharon B. & Harvey, Adam P., 2016. "A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1179-1198.
    19. Intaramas, Kanpichcha & Jonglertjunya, Woranart & Laosiripojana, Navadol & Sakdaronnarong, Chularat, 2018. "Selective conversion of cassava mash to glucose using solid acid catalysts by sequential solid state mixed-milling reaction and thermo-hydrolysis," Energy, Elsevier, vol. 149(C), pages 837-847.
    20. Sitepu, Eko K. & Heimann, Kirsten & Raston, Colin L. & Zhang, Wei, 2020. "Critical evaluation of process parameters for direct biodiesel production from diverse feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:93:y:2018:i:c:p:16-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.