IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v94y2016icp680-692.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries

Author

Listed:
  • Karmellos, M.
  • Kopidou, D.
  • Diakoulaki, D.

Abstract

The scope of this paper is to investigate the driving factors of CO2 emissions from electricity generation in all European Union countries (EU-28) during the period 2000–2012. Particular emphasis is placed on the assessment of any potential association between the examined driving factors and major climate and energy policies implemented during the examined period. In addition, the analysis distinguishes two subperiods, namely 2000–2007 and 2007–2012 in order to detect the impact of the economic crisis on each distinct driving factor and, consequently, on the total level of CO2 emissions from the power sector. The model developed to analyse the changes in CO2 emissions from the power sector across EU-28, is based on LMDI-I method and takes into account five driving factors: level of activity, electricity intensity, electricity trade, efficiency of electricity generation and fuel mix. The obtained results show that in times of economic growth the main factor counterbalancing the activity effect was in most countries the decreasing electricity intensity, while the contribution of all other factors becomes apparent later, despite the economic crisis and in view of the Kyoto targets.

Suggested Citation

  • Karmellos, M. & Kopidou, D. & Diakoulaki, D., 2016. "A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries," Energy, Elsevier, vol. 94(C), pages 680-692.
  • Handle: RePEc:eee:energy:v:94:y:2016:i:c:p:680-692
    DOI: 10.1016/j.energy.2015.10.145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215015406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.10.145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bonenti, Francesca & Oggioni, Giorgia & Allevi, Elisabetta & Marangoni, Giacomo, 2013. "Evaluating the EU ETS impacts on profits, investments and prices of the Italian electricity market," Energy Policy, Elsevier, vol. 59(C), pages 242-256.
    2. Shrestha, Ram M. & Anandarajah, Gabrial & Liyanage, Migara H., 2009. "Factors affecting CO2 emission from the power sector of selected countries in Asia and the Pacific," Energy Policy, Elsevier, vol. 37(6), pages 2375-2384, June.
    3. Abada, Ibrahim & Briat, Vincent & Massol, Olivier, 2013. "Construction of a fuel demand function portraying interfuel substitution, a system dynamics approach," Energy, Elsevier, vol. 49(C), pages 240-251.
    4. Malla, Sunil, 2009. "CO2 emissions from electricity generation in seven Asia-Pacific and North American countries: A decomposition analysis," Energy Policy, Elsevier, vol. 37(1), pages 1-9, January.
    5. Shrestha, Ram M. & Timilsina, Govinda R., 1996. "Factors affecting CO2 intensities of power sector in Asia: A Divisia decomposition analysis," Energy Economics, Elsevier, vol. 18(4), pages 283-293, October.
    6. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    7. Pilli-Sihvola, Karoliina & Aatola, Piia & Ollikainen, Markku & Tuomenvirta, Heikki, 2010. "Climate change and electricity consumption--Witnessing increasing or decreasing use and costs?," Energy Policy, Elsevier, vol. 38(5), pages 2409-2419, May.
    8. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    9. Zhang, Ming & Liu, Xiao & Wang, Wenwen & Zhou, Min, 2013. "Decomposition analysis of CO2 emissions from electricity generation in China," Energy Policy, Elsevier, vol. 52(C), pages 159-165.
    10. Tomás, R.A.F. & Ramôa Ribeiro, F. & Santos, V.M.S. & Gomes, J.F.P. & Bordado, J.C.M., 2010. "Assessment of the impact of the European CO2 emissions trading scheme on the Portuguese chemical industry," Energy Policy, Elsevier, vol. 38(1), pages 626-632, January.
    11. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    12. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    13. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    14. Yihsu Chen & Jos Sijm & Benjamin Hobbs & Wietze Lise, 2008. "Implications of CO 2 emissions trading for short-run electricity market outcomes in northwest Europe," Journal of Regulatory Economics, Springer, vol. 34(3), pages 251-281, December.
    15. Heymi Bahar & Jehan Sauvage, 2013. "Cross-Border Trade in Electricity and the Development of Renewables-Based Electric Power: Lessons from Europe," OECD Trade and Environment Working Papers 2013/2, OECD Publishing.
    16. Rogge, Karoline S. & Hoffmann, Volker H., 2010. "The impact of the EU ETS on the sectoral innovation system for power generation technologies - Findings for Germany," Energy Policy, Elsevier, vol. 38(12), pages 7639-7652, December.
    17. Ochoa, Patricia, 2007. "Policy changes in the Swiss electricity market: Analysis of likely market responses," Socio-Economic Planning Sciences, Elsevier, vol. 41(4), pages 336-349, December.
    18. Soimakallio, Sampo & Saikku, Laura, 2012. "CO2 emissions attributed to annual average electricity consumption in OECD (the Organisation for Economic Co-operation and Development) countries," Energy, Elsevier, vol. 38(1), pages 13-20.
    19. Qudrat-Ullah, Hassan, 2014. "Green power in Ontario: A dynamic model-based analysis," Energy, Elsevier, vol. 77(C), pages 859-870.
    20. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    21. Sioshansi, Fereidoon P., 2006. "Electricity Market Reform: What Have We Learned? What Have We Gained?," The Electricity Journal, Elsevier, vol. 19(9), pages 70-83, November.
    22. Ang, B.W. & Liu, Na, 2007. "Handling zero values in the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 238-246, January.
    23. Steenhof, Paul A. & Weber, Chris J., 2011. "An assessment of factors impacting Canada's electricity sector's GHG emissions," Energy Policy, Elsevier, vol. 39(7), pages 4089-4096, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang, B.W. & Goh, Tian, 2016. "Carbon intensity of electricity in ASEAN: Drivers, performance and outlook," Energy Policy, Elsevier, vol. 98(C), pages 170-179.
    2. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    3. Xue-Ting Jiang & Min Su & Rongrong Li, 2018. "Decomposition Analysis in Electricity Sector Output from Carbon Emissions in China," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    4. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    5. Mathy, Sandrine & Menanteau, Philippe & Criqui, Patrick, 2018. "After the Paris Agreement: Measuring the Global Decarbonization Wedges From National Energy Scenarios," Ecological Economics, Elsevier, vol. 150(C), pages 273-289.
    6. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    7. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    8. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    9. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.
    10. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
    11. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    12. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    13. Hu, Junfeng & Kahrl, Fredrich & Yan, Qingyou & Wang, Xiaoya, 2012. "The impact of China's differential electricity pricing policy on power sector CO2 emissions," Energy Policy, Elsevier, vol. 45(C), pages 412-419.
    14. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    15. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    16. Yan, Qingyou & Zhang, Qian & Zou, Xin, 2016. "Decomposition analysis of carbon dioxide emissions in China's regional thermal electricity generation, 2000–2020," Energy, Elsevier, vol. 112(C), pages 788-794.
    17. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    18. Harmsen, Robert & Crijns-Graus, Wina, 2021. "Unhiding the role of CHP in power & heat sector decomposition analyses," Energy Policy, Elsevier, vol. 152(C).
    19. Wang, Wenchao & Mu, Hailin & Kang, Xudong & Song, Rongchen & Ning, Yadong, 2010. "Changes in industrial electricity consumption in china from 1998 to 2007," Energy Policy, Elsevier, vol. 38(7), pages 3684-3690, July.
    20. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:94:y:2016:i:c:p:680-692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.