IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i5p2409-2419.html
   My bibliography  Save this article

Climate change and electricity consumption--Witnessing increasing or decreasing use and costs?

Author

Listed:
  • Pilli-Sihvola, Karoliina
  • Aatola, Piia
  • Ollikainen, Markku
  • Tuomenvirta, Heikki

Abstract

Climate change affects the need for heating and cooling. This paper examines the impact of gradually warming climate on the need for heating and cooling with an econometric multivariate regression model for five countries in Europe along the south-north line. The predicted changes in electricity demand are then used to analyze how climate change impacts the cost of electricity use, including carbon costs. Our main findings are, that in Central and North Europe, the decrease in heating due to climate warming, dominates and thus costs will decrease for both users of electricity and in carbon markets. In Southern Europe climate warming, and the consequential increase in cooling and electricity demand, overcomes the decreased need for heating. Therefore costs also increase. The main contributors are the role of electricity in heating and cooling, and the climatic zone.

Suggested Citation

  • Pilli-Sihvola, Karoliina & Aatola, Piia & Ollikainen, Markku & Tuomenvirta, Heikki, 2010. "Climate change and electricity consumption--Witnessing increasing or decreasing use and costs?," Energy Policy, Elsevier, vol. 38(5), pages 2409-2419, May.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:5:p:2409-2419
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00989-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klessmann, Corinna & Nabe, Christian & Burges, Karsten, 2008. "Pros and cons of exposing renewables to electricity market risks--A comparison of the market integration approaches in Germany, Spain, and the UK," Energy Policy, Elsevier, vol. 36(10), pages 3646-3661, October.
    2. Russ, Peter & Criqui, Patrick, 2007. "Post-Kyoto CO2 emission reduction: The soft landing scenario analysed with POLES and other world models," Energy Policy, Elsevier, vol. 35(2), pages 786-796, February.
    3. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    4. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    5. Unknown, 2004. "UFW Contract: Muranaka Farms, Inc," United Farm Workers (UFW) Contracts 236470, University of California, Davis, Changing Face.
    6. Ariño, Africa & Reuer, Jeffrey J., 2004. "Alliance contractual design," IESE Research Papers D/572, IESE Business School.
    7. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    8. Matei Demetrescu & Uwe Hassler, 2007. "Effect of neglected deterministic seasonality on unit root tests," Statistical Papers, Springer, vol. 48(3), pages 385-402, September.
    9. Han, Seungjin, 2006. "Menu theorems for bilateral contracting," Journal of Economic Theory, Elsevier, vol. 131(1), pages 157-178, November.
    10. Unknown, 2004. "UFW Contract: Bud Antle, Inc," United Farm Workers (UFW) Contracts 236396, University of California, Davis, Changing Face.
    11. Peter Russ & Patrick Criqui, 2007. "Post-Kyoto CO2 emission reduction : the soft landing scenario analysed with POLES and other world models," Post-Print halshs-00078489, HAL.
    12. Unknown, 2004. "UFW Contract: Pictsweet Mushroom Farms," United Farm Workers (UFW) Contracts 236481, University of California, Davis, Changing Face.
    13. Sailor, David J, 2001. "Relating residential and commercial sector electricity loads to climate—evaluating state level sensitivities and vulnerabilities," Energy, Elsevier, vol. 26(7), pages 645-657.
    14. Mirasgedis, S. & Sarafidis, Y. & Georgopoulou, E. & Lalas, D.P. & Moschovits, M. & Karagiannis, F. & Papakonstantinou, D., 2006. "Models for mid-term electricity demand forecasting incorporating weather influences," Energy, Elsevier, vol. 31(2), pages 208-227.
    15. Tai-Yeong Chung & Alan Chan, 2004. "Contract Damages and Investment Dynamics," Econometric Society 2004 Far Eastern Meetings 683, Econometric Society.
    16. Ruth, Matthias & Lin, Ai-Chen, 2006. "Regional energy demand and adaptations to climate change: Methodology and application to the state of Maryland, USA," Energy Policy, Elsevier, vol. 34(17), pages 2820-2833, November.
    17. Hao Li & Wing Suen, 2004. "Self-Fulfilling Early-Contracting Rush," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(1), pages 301-324, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    2. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    3. Hekkenberg, M. & Benders, R.M.J. & Moll, H.C. & Schoot Uiterkamp, A.J.M., 2009. "Indications for a changing electricity demand pattern: The temperature dependence of electricity demand in the Netherlands," Energy Policy, Elsevier, vol. 37(4), pages 1542-1551, April.
    4. Son, Hyojoo & Kim, Changwan, 2017. "Short-term forecasting of electricity demand for the residential sector using weather and social variables," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 200-207.
    5. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    6. Wang, Yaoping & Bielicki, Jeffrey M., 2018. "Acclimation and the response of hourly electricity loads to meteorological variables," Energy, Elsevier, vol. 142(C), pages 473-485.
    7. Jianhua Huang & Kevin Robert Gurney, 2016. "Impact of climate change on U.S. building energy demand: sensitivity to spatiotemporal scales, balance point temperature, and population distribution," Climatic Change, Springer, vol. 137(1), pages 171-185, July.
    8. Reza Fazeli & Brynhildur Davidsdottir & Jonas Hlynur Hallgrimsson, 2016. "Climate Impact On Energy Demand For Space Heating In Iceland," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-23, May.
    9. Thatcher, Marcus J., 2007. "Modelling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia," Energy, Elsevier, vol. 32(9), pages 1647-1659.
    10. Santágata, Daniela M. & Castesana, Paula & Rössler, Cristina E. & Gómez, Darío R., 2017. "Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)," Energy Policy, Elsevier, vol. 106(C), pages 404-414.
    11. Ahmed, T. & Muttaqi, K.M. & Agalgaonkar, A.P., 2012. "Climate change impacts on electricity demand in the State of New South Wales, Australia," Applied Energy, Elsevier, vol. 98(C), pages 376-383.
    12. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    13. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).
    14. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
    15. Gupta, Eshita, 2012. "Global warming and electricity demand in the rapidly growing city of Delhi: A semi-parametric variable coefficient approach," Energy Economics, Elsevier, vol. 34(5), pages 1407-1421.
    16. Bessec, Marie & Fouquau, Julien, 2008. "The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach," Energy Economics, Elsevier, vol. 30(5), pages 2705-2721, September.
    17. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    18. Hekkenberg, M. & Moll, H.C. & Uiterkamp, A.J.M. Schoot, 2009. "Dynamic temperature dependence patterns in future energy demand models in the context of climate change," Energy, Elsevier, vol. 34(11), pages 1797-1806.
    19. Eshraghi, Hadi & Rodrigo de Queiroz, Anderson & Sankarasubramanian, A. & DeCarolis, Joseph F., 2021. "Quantification of climate-induced interannual variability in residential U.S. electricity demand," Energy, Elsevier, vol. 236(C).
    20. repec:dau:papers:123456789/8180 is not listed on IDEAS
    21. Marilyn A. Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:5:p:2409-2419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.