IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p950-d141388.html
   My bibliography  Save this article

The Biodiesel of Microalgae as a Solution for Diesel Demand in Iran

Author

Listed:
  • Afshin Ghorbani

    (Department of Chemical Engineering, School of Chemical, Petroleum and Gas Engineering, Shiraz University, Shiraz 71345, Iran)

  • Mohammad Reza Rahimpour

    (Department of Chemical Engineering, School of Chemical, Petroleum and Gas Engineering, Shiraz University, Shiraz 71345, Iran)

  • Younes Ghasemi

    (Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
    Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71345, Iran
    Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz 71345, Iran)

  • Sona Raeissi

    (Department of Chemical Engineering, School of Chemical, Petroleum and Gas Engineering, Shiraz University, Shiraz 71345, Iran)

Abstract

Among the fossil fuels, diesel has the major share in petroleum product consumption. Diesel demand in Iran has increasingly grown due to the low price of diesel, a high subsidy, and an unsuitable consumption pattern. During 2006–2007, this growth imposed 2.2 billion liters of imports, which were equivalent to 7.5% of diesel production in 2007 and cost about $1.2 billion. Therefore, the government implemented fuel rationing in 2007 and a targeted subsidy law in 2010. These projects have not gained effective control of consumption due to the wide gap between the international diesel price and the domestic price. Diesel import after the implementation of fuel rationing and the targeted subsidy law in 2011 imposed 3.6 billion liters of import and cost about $2.2 billion. Therefore, the government will need fundamental strategies and policies to face and control the negative impact on the economy and the environment. Third generation fuels, biofuels, as another supplementary approach seems to have the capability to reduce the petroleum requirement. This paper investigates the potential of biodiesel as diesel alternative fuel from oil seeds and microalgae in Iran along with evaluating the policy for reducing diesel consumption. Dunaliella salina as an indigenous green microalga isolated from the Maharlu Salt Lake was cultivated in an integration of an airlift system and a raceway pond (IARWP) to prove microalgal potentials in Iran. Additionally, the natural culture medium from the Maharlu Salt Lake was utilized for Dunaliella salina in order to commercialize and reduce cultivation cost. Compared to oilseeds, microalgae because of their high lipid content have much potential to solve a fuel consumption problem. This paper found that only 21 percent of cultivable land is needed to replace the diesel currently consumed in Iran with microalgal biodiesel.

Suggested Citation

  • Afshin Ghorbani & Mohammad Reza Rahimpour & Younes Ghasemi & Sona Raeissi, 2018. "The Biodiesel of Microalgae as a Solution for Diesel Demand in Iran," Energies, MDPI, vol. 11(4), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:950-:d:141388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/950/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/950/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Borowitzka & Navid Moheimani, 2013. "Sustainable biofuels from algae," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 13-25, January.
    2. Majid Ahmadian & Mona Chitnis & Lester C. Hunt, 2007. "Gasoline demand, pricing policy and social welfare in the Islamic Republic of Iran," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 31(2), pages 105-124, June.
    3. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    4. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    5. Ali, Mehmood & Watson, Ian A., 2015. "Microwave treatment of wet algal paste for enhanced solvent extraction of lipids for biodiesel production," Renewable Energy, Elsevier, vol. 76(C), pages 470-477.
    6. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    7. Mirzahosseini, Alireza Hajiseyed & Taheri, Taraneh, 2012. "Environmental, technical and financial feasibility study of solar power plants by RETScreen, according to the targeting of energy subsidies in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2806-2811.
    8. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal F., 2011. "Algae as a sustainable energy source for biofuel production in Iran: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3870-3876.
    9. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    10. Aziz, Muhammad & Oda, Takuya & Kashiwagi, Takao, 2013. "Enhanced high energy efficient steam drying of algae," Applied Energy, Elsevier, vol. 109(C), pages 163-170.
    11. Ghobadian, Barat & Najafi, Gholamhassan & Rahimi, Hadi & Yusaf, T.F., 2009. "Future of renewable energies in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 689-695, April.
    12. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    13. Majid Ahmadian & Mona Chitnis & Lester C Hunt, 2007. "Gasoline Demand, Pricing Policy and Social Welfare in Iran," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 117, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
    14. Russo, D. & Dassisti, M. & Lawlor, V. & Olabi, A.G., 2012. "State of the art of biofuels from pure plant oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4056-4070.
    15. Demirbas, Ayhan, 2007. "Importance of biodiesel as transportation fuel," Energy Policy, Elsevier, vol. 35(9), pages 4661-4670, September.
    16. Alexander V. Balatsky & Galina I. Balatsky & Stanislav S. Borysov, 2015. "Resource Demand Growth and Sustainability Due to Increased World Consumption," Sustainability, MDPI, vol. 7(3), pages 1-11, March.
    17. Norman, Marc E., 1994. "Reducing gasoline use: A multipronged approach," Energy Policy, Elsevier, vol. 22(1), pages 37-39, January.
    18. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    19. Timilsina, Govinda R. & Shrestha, Ashish, 2011. "How much hope should we have for biofuels?," Energy, Elsevier, vol. 36(4), pages 2055-2069.
    20. Bezergianni, Stella & Dimitriadis, Athanasios, 2013. "Comparison between different types of renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 110-116.
    21. Tabatabaei, Meisam & Tohidfar, Masoud & Jouzani, Gholamreza Salehi & Safarnejad, Mohammadreza & Pazouki, Mohammad, 2011. "Biodiesel production from genetically engineered microalgae: Future of bioenergy in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1918-1927, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    2. Radosław Ciesielski & Mateusz Zakrzewski & Oleksandr Shtyka & Tomasz Maniecki & Adam Rylski & Marek Wozniak & Przemyslaw Kubiak & Krzysztof Siczek, 2022. "The Research on Characteristics of CI Engine Supplied with Biodiesels from Brown and Yellow Grease," Energies, MDPI, vol. 15(11), pages 1-17, June.
    3. Ravanipour, Masoumeh & Hamidi, Ali & Mahvi, Amir Hossein, 2021. "Microalgae biodiesel: A systematic review in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Mario Collotta & Yunchuan Sun & Luca Di Persio & Emad Samuel Malki Ebeid & Riccardo Muradore, 2018. "Smart Green Applications: From Renewable Energy Management to Intelligent Transportation Systems," Energies, MDPI, vol. 11(5), pages 1-3, May.
    5. Seyyedeh Faezeh Mirab Haghighi & Payam Parvasi & Seyyed Mohammad Jokar & Angelo Basile, 2021. "Investigating the Effects of Ultrasonic Frequency and Membrane Technology on Biodiesel Production from Chicken Waste," Energies, MDPI, vol. 14(8), pages 1-21, April.
    6. Chia-Hung Su & Hoang Chinh Nguyen & Uyen Khanh Pham & My Linh Nguyen & Horng-Yi Juan, 2018. "Biodiesel Production from a Novel Nonedible Feedstock, Soursop ( Annona muricata L.) Seed Oil," Energies, MDPI, vol. 11(10), pages 1-11, September.
    7. Agata Jabłońska-Trypuć & Elżbieta Wołejko & Mahmudova Dildora Ernazarovna & Aleksandra Głowacka & Gabriela Sokołowska & Urszula Wydro, 2023. "Using Algae for Biofuel Production: A Review," Energies, MDPI, vol. 16(4), pages 1-23, February.
    8. Naeini, Mina Alavi & Zandieh, Mostafa & Najafi, Seyyed Esmaeil & Sajadi, Seyed Mojtaba, 2020. "Analyzing the development of the third-generation biodiesel production from microalgae by a novel hybrid decision-making method: The case of Iran," Energy, Elsevier, vol. 195(C).
    9. Sri Kurniati & Sudjito Soeparman & Sudarminto Setyo Yuwono & Lukman Hakim & Sudirman Syam, 2019. "A Novel Process for Production of Calophyllum Inophyllum Biodiesel with Electromagnetic Induction," Energies, MDPI, vol. 12(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravanipour, Masoumeh & Hamidi, Ali & Mahvi, Amir Hossein, 2021. "Microalgae biodiesel: A systematic review in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    3. Hosseini, Seyed Ehsan & Andwari, Amin Mahmoudzadeh & Wahid, Mazlan Abdul & Bagheri, Ghobad, 2013. "A review on green energy potentials in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 533-545.
    4. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    5. Hasan, Atiye Haj & Avami, Akram, 2018. "Water and emissions nexus for biodiesel in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 354-363.
    6. Tandon, Puja & Jin, Qiang, 2017. "Microalgae culture enhancement through key microbial approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1089-1099.
    7. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    8. Naeini, Mina Alavi & Zandieh, Mostafa & Najafi, Seyyed Esmaeil & Sajadi, Seyed Mojtaba, 2020. "Analyzing the development of the third-generation biodiesel production from microalgae by a novel hybrid decision-making method: The case of Iran," Energy, Elsevier, vol. 195(C).
    9. Avinash, A. & Subramaniam, D. & Murugesan, A., 2014. "Bio-diesel—A global scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 517-527.
    10. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    11. Islam, Muhammad Aminul & Heimann, Kirsten & Brown, Richard J., 2017. "Microalgae biodiesel: Current status and future needs for engine performance and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1160-1170.
    12. Maity, Jyoti Prakash & Bundschuh, Jochen & Chen, Chien-Yen & Bhattacharya, Prosun, 2014. "Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review," Energy, Elsevier, vol. 78(C), pages 104-113.
    13. Avami, Akram, 2012. "A model for biodiesel supply chain: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4196-4203.
    14. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    15. Adeniyi, Oladapo Martins & Azimov, Ulugbek & Burluka, Alexey, 2018. "Algae biofuel: Current status and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 316-335.
    16. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.
    17. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    18. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    19. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    20. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:950-:d:141388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.