IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2271-d239592.html
   My bibliography  Save this article

Classification of Renewable Sources of Electricity in the Context of Sustainable Development of the New EU Member States

Author

Listed:
  • Jacek Brożyna

    (Department of Quantitative Methods, The Faculty of Management, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Grzegorz Mentel

    (Department of Quantitative Methods, The Faculty of Management, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Eva Ivanová

    (Department of Economics and Economy, Faculty of Social Economics Relationships, Alexander Dubcek University of Trencin, 911 50 Trencin, Slovakia)

  • Gennadii Sorokin

    (Department of Business Informatics and Mathematics, Tyumen Industrial University, 625000 Tyumen, Russia)

Abstract

Climate change and awareness of the need to care for the environment have resulted in a global increase in the interest in renewable energy sources. The European Union (EU) is active in this respect and requires Member States to fulfill specific plans in the transformation of their energy systems. We employed hierarchical cluster analysis in an attempt to distinguish those countries among the new EU Member States that increased their electrical capacity from renewable energy sources to the greatest extent while paying attention to their energy intensity. The analyses were conducted in two scenarios for both 2004 and 2016. The first scenario assumed an analysis of all known renewable energy sources, whereas in the second scenario, only renewable energy sources from wind and solar power plants were included. The division of analyses into these two variants showed the importance of the differences in the energy assessment of individual countries, depending on classification of renewable energy sources. We identified groups of countries where electrical capacity from renewable energy sources increased the most. Conducting analyses using two variants allowed distinguishing countries that based most of their renewable energy on modern renewable energy sources, such as solar and wind power plants. The inclusion of gross domestic product in the analyses allowed us to identify countries with the worst energy efficiency value.

Suggested Citation

  • Jacek Brożyna & Grzegorz Mentel & Eva Ivanová & Gennadii Sorokin, 2019. "Classification of Renewable Sources of Electricity in the Context of Sustainable Development of the New EU Member States," Energies, MDPI, vol. 12(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2271-:d:239592
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stamatios Ntanos & Grigorios Kyriakopoulos & Miltiadis Chalikias & Garyfallos Arabatzis & Michalis Skordoulis, 2018. "Public Perceptions and Willingness to Pay for Renewable Energy: A Case Study from Greece," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    2. Azomahou, Theophile & Laisney, Francois & Nguyen Van, Phu, 2006. "Economic development and CO2 emissions: A nonparametric panel approach," Journal of Public Economics, Elsevier, vol. 90(6-7), pages 1347-1363, August.
    3. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    4. Shahbaz, Muhammad & Tang, Chor Foon & Shahbaz Shabbir, Muhammad, 2011. "Electricity consumption and economic growth nexus in Portugal using cointegration and causality approaches," Energy Policy, Elsevier, vol. 39(6), pages 3529-3536, June.
    5. Ardakani, F.J. & Ardehali, M.M., 2014. "Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types," Energy, Elsevier, vol. 65(C), pages 452-461.
    6. Campos, Nauro F. & Coricelli, Fabrizio & Moretti, Luigi, 2014. "Economic Growth and Political Integration: Estimating the Benefits from Membership in the European Union Using the Synthetic Counterfactuals Method," IZA Discussion Papers 8162, Institute of Labor Economics (IZA).
    7. Chao Bi & Minna Jia & Jingjing Zeng, 2019. "Nonlinear Effect of Public Infrastructure on Energy Intensity in China: A Panel Smooth Transition Regression Approach," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
    8. McCarthy, Ryan & Yang, Christopher & Ogden, Joan M., 2008. "California Energy Demand Scenario Projections to 2050," Institute of Transportation Studies, Working Paper Series qt36x5006p, Institute of Transportation Studies, UC Davis.
    9. Frey, Gary W. & Linke, Deborah M., 2002. "Hydropower as a renewable and sustainable energy resource meeting global energy challenges in a reasonable way," Energy Policy, Elsevier, vol. 30(14), pages 1261-1265, November.
    10. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    11. Al-mulali, Usama, 2012. "Factors affecting CO2 emission in the Middle East: A panel data analysis," Energy, Elsevier, vol. 44(1), pages 564-569.
    12. Briones Hidrovo, Andrei & Uche, Javier & Martínez-Gracia, Amaya, 2017. "Accounting for GHG net reservoir emissions of hydropower in Ecuador," Renewable Energy, Elsevier, vol. 112(C), pages 209-221.
    13. Huiru Zhao & Sen Guo, 2015. "External Benefit Evaluation of Renewable Energy Power in China for Sustainability," Sustainability, MDPI, vol. 7(5), pages 1-23, April.
    14. Anca Mehedintu & Mihaela Sterpu & Georgeta Soava, 2018. "Estimation and Forecasts for the Share of Renewable Energy Consumption in Final Energy Consumption by 2020 in the European Union," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    15. Inger Auestad & Yngve Nilsen & Knut Rydgren, 2018. "Environmental Restoration in Hydropower Development—Lessons from Norway," Sustainability, MDPI, vol. 10(9), pages 1-12, September.
    16. Malla,Sunil & Timilsina,Govinda R., 2016. "Long-term energy demand forecasting in Romania : an end-use demand," Policy Research Working Paper Series 7697, The World Bank.
    17. Narayan, Paresh Kumar & Narayan, Seema, 2010. "Carbon dioxide emissions and economic growth: Panel data evidence from developing countries," Energy Policy, Elsevier, vol. 38(1), pages 661-666, January.
    18. Linghong Zhang & Bowen Xue & Xiyu Liu, 2018. "Carbon Emission Reduction with Regard to Retailer’s Fairness Concern and Subsidies," Sustainability, MDPI, vol. 10(4), pages 1-28, April.
    19. Elisa Peñalvo-López & Francisco Javier Cárcel-Carrasco & Carlos Devece & Ana Isolda Morcillo, 2017. "A Methodology for Analysing Sustainability in Energy Scenarios," Sustainability, MDPI, vol. 9(9), pages 1-12, September.
    20. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    21. José M. Pastor & Carlos Peraita & Lorenzo Serrano & Ángel Soler, 2018. "Higher education institutions, economic growth and GDP per capita in European Union countries," European Planning Studies, Taylor & Francis Journals, vol. 26(8), pages 1616-1637, August.
    22. Rodríguez-Caballero, Carlos Vladimir & Ventosa-Santaulària, Daniel, 2017. "Energy-growth long-term relationship under structural breaks. Evidence from Canada, 17 Latin American economies and the USA," Energy Economics, Elsevier, vol. 61(C), pages 121-134.
    23. Inglesi-Lotz, Roula, 2016. "The impact of renewable energy consumption to economic growth: A panel data application," Energy Economics, Elsevier, vol. 53(C), pages 58-63.
    24. Resch, Gustav & Held, Anne & Faber, Thomas & Panzer, Christian & Toro, Felipe & Haas, Reinhard, 2008. "Potentials and prospects for renewable energies at global scale," Energy Policy, Elsevier, vol. 36(11), pages 4048-4056, November.
    25. Tiago Sequeira & Marcelo Santos, 2018. "Education and Energy Intensity: Simple Economic Modelling and Preliminary Empirical Results," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    26. Gobong Choi & Eunnyeong Heo & Chul-Yong Lee, 2018. "Dynamic Economic Analysis of Subsidies for New and Renewable Energy in South Korea," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
    27. Yuzhuo Zhang & Xingang Zhao & Yi Zuo & Lingzhi Ren & Ling Wang, 2017. "The Development of the Renewable Energy Power Industry under Feed-In Tariff and Renewable Portfolio Standard: A Case Study of China’s Photovoltaic Power Industry," Sustainability, MDPI, vol. 9(4), pages 1-23, March.
    28. Nicolini, Marcella & Tavoni, Massimo, 2017. "Are renewable energy subsidies effective? Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 412-423.
    29. Scarlat, Nicolae & Dallemand, Jean-François & Monforti-Ferrario, Fabio & Banja, Manjola & Motola, Vincenzo, 2015. "Renewable energy policy framework and bioenergy contribution in the European Union – An overview from National Renewable Energy Action Plans and Progress Reports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 969-985.
    30. Menegaki, Angeliki N., 2011. "Growth and renewable energy in Europe: A random effect model with evidence for neutrality hypothesis," Energy Economics, Elsevier, vol. 33(2), pages 257-263, March.
    31. Sadorsky, Perry, 2009. "Renewable energy consumption and income in emerging economies," Energy Policy, Elsevier, vol. 37(10), pages 4021-4028, October.
    32. Jon Sampedro & Iñaki Arto & Mikel González-Eguino, 2017. "Implications of Switching Fossil Fuel Subsidies to Solar: A Case Study for the European Union," Sustainability, MDPI, vol. 10(1), pages 1-12, December.
    33. Vincenzo Franzitta & Domenico Curto & Davide Rao, 2016. "Energetic Sustainability Using Renewable Energies in the Mediterranean Sea," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    34. He Li & Kevin Lo & Mark Wang & Pingyu Zhang & Longyi Xue, 2016. "Industrial Energy Consumption in Northeast China under the Revitalisation Strategy: A Decomposition and Policy Analysis," Energies, MDPI, vol. 9(7), pages 1-13, July.
    35. Fang, Yiping, 2011. "Economic welfare impacts from renewable energy consumption: The China experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5120-5128.
    36. Yusuke Kishita & Yohei Yamaguchi & Yasushi Umeda & Yoshiyuki Shimoda & Minako Hara & Atsushi Sakurai & Hiroki Oka & Yuriko Tanaka, 2016. "Describing Long-Term Electricity Demand Scenarios in the Telecommunications Industry: A Case Study of Japan," Sustainability, MDPI, vol. 8(1), pages 1-16, January.
    37. Sari, Ramazan & Ewing, Bradley T. & Soytas, Ugur, 2008. "The relationship between disaggregate energy consumption and industrial production in the United States: An ARDL approach," Energy Economics, Elsevier, vol. 30(5), pages 2302-2313, September.
    38. Lee, Chien-Chiang, 2006. "The causality relationship between energy consumption and GDP in G-11 countries revisited," Energy Policy, Elsevier, vol. 34(9), pages 1086-1093, June.
    39. Kayhan, Selim & Adiguzel, Uğur & Bayat, Tayfur & Lebe, Fuat, 2010. "Causality Relationship between Real GDP and Electricity Consumption in Romania (2001-2010)," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 169-183, December.
    40. Li, Xianguo, 2005. "Diversification and localization of energy systems for sustainable development and energy security," Energy Policy, Elsevier, vol. 33(17), pages 2237-2243, November.
    41. Caraiani, Chirața & Lungu, Camelia I. & Dascălu, Cornelia, 2015. "Energy consumption and GDP causality: A three-step analysis for emerging European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 198-210.
    42. Mahmure Övül Arıoğlu Akan & Ayşe Ayçim Selam & Seniye Ümit Oktay Fırat & Merve Er Kara & Semih Özel, 2015. "A Comparative Analysis of Renewable Energy Use and Policies: Global and Turkish Perspectives," Sustainability, MDPI, vol. 7(12), pages 1-29, December.
    43. Qoaider, Louy & Steinbrecht, Dieter, 2010. "Photovoltaic systems: A cost competitive option to supply energy to off-grid agricultural communities in arid regions," Applied Energy, Elsevier, vol. 87(2), pages 427-435, February.
    44. Wurlod, Jules-Daniel & Noailly, Joëlle, 2018. "The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries," Energy Economics, Elsevier, vol. 71(C), pages 47-61.
    45. Lidia Gawlik, 2018. "The Polish power industry in energy transformation process," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 31(1), pages 229-237, May.
    46. Huiming Zhang & Yu Zheng & Dequn Zhou & Peifeng Zhu, 2015. "Which Subsidy Mode Improves the Financial Performance of Renewable Energy Firms? A Panel Data Analysis of Wind and Solar Energy Companies between 2009 and 2014," Sustainability, MDPI, vol. 7(12), pages 1-13, December.
    47. Saiah, Saiah Bekkar Djelloul & Stambouli, Amine Boudghene, 2017. "Prospective analysis for a long-term optimal energy mix planning in Algeria: Towards high electricity generation security in 2062," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 26-43.
    48. Yongrok Choi, 2018. "The Asian Values of Guānxì as an Economic Model for Transition toward Green Growth," Sustainability, MDPI, vol. 10(7), pages 1-20, June.
    49. Stigka, Eleni K. & Paravantis, John A. & Mihalakakou, Giouli K., 2014. "Social acceptance of renewable energy sources: A review of contingent valuation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 100-106.
    50. Coricelli, Fabrizio & Campos, Nauro & Moretti, Luigi, 2014. "Economic Growth and Political Integration: Estimating the Benefits from Membership in the European Union Using the Synthetic Co," CEPR Discussion Papers 9968, C.E.P.R. Discussion Papers.
    51. Bowden, Nicholas & Payne, James E., 2009. "The causal relationship between U.S. energy consumption and real output: A disaggregated analysis," Journal of Policy Modeling, Elsevier, vol. 31(2), pages 180-188.
    52. Aparna Katre & Arianna Tozzi, 2018. "Assessing the Sustainability of Decentralized Renewable Energy Systems: A Comprehensive Framework with Analytical Methods," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    53. Gabor J. Szekely & Maria L. Rizzo, 2005. "Hierarchical Clustering via Joint Between-Within Distances: Extending Ward's Minimum Variance Method," Journal of Classification, Springer;The Classification Society, vol. 22(2), pages 151-183, September.
    54. Jacek Brozyna & Grzegorz Mentel & Beata Szetela, 2016. "A Mid-Term Forecast of Maximum Demand for Electricity in Poland," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 12(2), pages 73-88.
    55. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanisław Jaworski & Mariola Chrzanowska & Monika Zielińska-Sitkiewicz & Robert Pietrzykowski & Aleksandra Jezierska-Thöle & Piotr Zielonka, 2023. "Evaluating the Progress of Renewable Energy Sources in Poland: A Multidimensional Analysis," Energies, MDPI, vol. 16(18), pages 1-21, September.
    2. G.S. Chebotareva & A.A. Dvinayninov, 2021. "An Economic Alternative to Replacing Centralized Gas Supply with Autonomous Biogas Facilities in Russian Cities," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 20(3), pages 582-612.
    3. Anny Key de Souza Mendonça & Silvio Aparecido da Silva & Luísa Zeredo Pereira & Antonio Cezar Bornia & Dalton Francisco de Andrade, 2020. "An Overview of Environmental Policies for Mitigation and Adaptation to Climate Change and Application of Multilevel Regression Analysis to Investigate the CO 2 Emissions over the Years of 1970 to 2018," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    4. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    5. Jacek Brożyna & Wadim Strielkowski & Aleš Zpěvák, 2023. "Evaluating the Chances of Implementing the “Fit for 55” Green Transition Package in the V4 Countries," Energies, MDPI, vol. 16(6), pages 1-17, March.
    6. Radosław Wolniak & Bożena Skotnicka-Zasadzień, 2023. "Development of Wind Energy in EU Countries as an Alternative Resource to Fossil Fuels in the Years 2016–2022," Resources, MDPI, vol. 12(8), pages 1-33, August.
    7. Ewa Chomać-Pierzecka & Anna Sobczak & Edward Urbańczyk, 2022. "RES Market Development and Public Awareness of the Economic and Environmental Dimension of the Energy Transformation in Poland and Lithuania," Energies, MDPI, vol. 15(15), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    2. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    3. Destek, Mehmet Akif, 2016. "Renewable energy consumption and economic growth in newly industrialized countries: Evidence from asymmetric causality test," Renewable Energy, Elsevier, vol. 95(C), pages 478-484.
    4. Rahman, Mohammad Mafizur & Velayutham, Eswaran, 2020. "Renewable and non-renewable energy consumption-economic growth nexus: New evidence from South Asia," Renewable Energy, Elsevier, vol. 147(P1), pages 399-408.
    5. Destek, Mehmet Akif, 2016. "Natural gas consumption and economic growth: Panel evidence from OECD countries," Energy, Elsevier, vol. 114(C), pages 1007-1015.
    6. Kahia, Montassar & Ben Aissa, Mohamed Safouane, 2014. "Renewable and non-renewable energy consumption and economic growth: Evidence from MENA Net Oil Exporting Countries," MPRA Paper 80776, University Library of Munich, Germany.
    7. Shahbaz, Muhammad & Hussain Shahzad, Syed Jawad & Jammazi, Rania, 2016. "Nexus between U.S Energy Sources and Economic Activity: Time-Frequency and Bootstrap Rolling Window Causality Analysis," MPRA Paper 68724, University Library of Munich, Germany, revised 08 Jan 2016.
    8. Wang, Shaojian & Li, Guangdong & Fang, Chuanglin, 2018. "Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2144-2159.
    9. Saidi, Hichem & El Montasser, Ghassen & Ajmi, Noomen, 2018. "Renewable Energy, Quality of Institutions and Economic Growth in MENA Countries: a Panel Cointegration Approach," MPRA Paper 84055, University Library of Munich, Germany.
    10. Yang, Mian & Wang, En-Ze & Hou, Yaru, 2021. "The relationship between manufacturing growth and CO2 emissions: Does renewable energy consumption matter?," Energy, Elsevier, vol. 232(C).
    11. Tuna, Gülfen & Tuna, Vedat Ender, 2019. "The asymmetric causal relationship between renewable and NON-RENEWABLE energy consumption and economic growth in the ASEAN-5 countries," Resources Policy, Elsevier, vol. 62(C), pages 114-124.
    12. Aydin, Mucahit, 2019. "Renewable and non-renewable electricity consumption–economic growth nexus: Evidence from OECD countries," Renewable Energy, Elsevier, vol. 136(C), pages 599-606.
    13. Dogan, Eyup & Inglesi-Lotz, Roula, 2017. "Analyzing the effects of real income and biomass energy consumption on carbon dioxide (CO2) emissions: Empirical evidence from the panel of biomass-consuming countries," Energy, Elsevier, vol. 138(C), pages 721-727.
    14. Tugcu, Can Tansel & Ozturk, Ilhan & Aslan, Alper, 2012. "Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries," Energy Economics, Elsevier, vol. 34(6), pages 1942-1950.
    15. Bilgili, Faik, 2015. "Business cycle co-movements between renewables consumption and industrial production: A continuous wavelet coherence approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 325-332.
    16. Radmehr, Riza & Henneberry, Shida Rastegari & Shayanmehr, Samira, 2021. "Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 13-27.
    17. Troster, Victor & Shahbaz, Muhammad & Uddin, Gazi Salah, 2018. "Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis," Energy Economics, Elsevier, vol. 70(C), pages 440-452.
    18. Alper, Aslan & Oguz, Ocal, 2016. "The role of renewable energy consumption in economic growth: Evidence from asymmetric causality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 953-959.
    19. Gozgor, Giray & Lau, Chi Keung Marco & Lu, Zhou, 2018. "Energy consumption and economic growth: New evidence from the OECD countries," Energy, Elsevier, vol. 153(C), pages 27-34.
    20. Nadia Singh & Richard Nyuur & Ben Richmond, 2019. "Renewable Energy Development as a Driver of Economic Growth: Evidence from Multivariate Panel Data Analysis," Sustainability, MDPI, vol. 11(8), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2271-:d:239592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.