IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v112y2017icp209-221.html
   My bibliography  Save this article

Accounting for GHG net reservoir emissions of hydropower in Ecuador

Author

Listed:
  • Briones Hidrovo, Andrei
  • Uche, Javier
  • Martínez-Gracia, Amaya

Abstract

Hydropower is one of most important considered renewable technologies to provide electricity generation worldwide. Bearing in mind the lack of LCA studies and the development of several hydroelectric projects in Ecuador, the purpose of this paper is to present a complete environmental performance of two hydropower schemes (dam and run-of-river) located in this country, through the life cycle assessment combined with reservoir GHG emissions approach. The run-of-river scheme had better environmental performance than the dam scheme. Very high emissions were found, being 547 Kg CO2-eq/MWh for dam scheme, which most of those emissions were originated in the reservoir, while the run-of-river scheme only score 2.6 Kg CO2-eq/MWh. However, comparing with fossil fuel power plants, hydropower dam case still has lower emissions in its entire life cycle. The paper remark that the majority of LCA studies which focus on dam hydropower scheme only consider the emissions of the construction, putting aside the loss of the ecosystem and the emissions caused by the impoundment. Moreover, the analysis also included the impact associated to water uses since reservoirs are usually devoted to several purposes (flood lamination, irrigation, ecological flow, power generation).

Suggested Citation

  • Briones Hidrovo, Andrei & Uche, Javier & Martínez-Gracia, Amaya, 2017. "Accounting for GHG net reservoir emissions of hydropower in Ecuador," Renewable Energy, Elsevier, vol. 112(C), pages 209-221.
  • Handle: RePEc:eee:renene:v:112:y:2017:i:c:p:209-221
    DOI: 10.1016/j.renene.2017.05.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117304317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.05.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Zhongwei & Xiao, Xiangming & Gan, Yaling & Zheng, Yuejun, 2001. "Ecosystem functions, services and their values - a case study in Xingshan County of China," Ecological Economics, Elsevier, vol. 38(1), pages 141-154, July.
    2. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    3. Raadal, Hanne Lerche & Gagnon, Luc & Modahl, Ingunn Saur & Hanssen, Ole Jørgen, 2011. "Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3417-3422, September.
    4. Pascale, Andrew & Urmee, Tania & Moore, Andrew, 2011. "Life cycle assessment of a community hydroelectric power system in rural Thailand," Renewable Energy, Elsevier, vol. 36(11), pages 2799-2808.
    5. De Simio, L. & Gambino, M. & Iannaccone, S., 2013. "Possible transport energy sources for the future," Transport Policy, Elsevier, vol. 27(C), pages 1-10.
    6. Zhang, Jin & Xu, Linyu & Li, Xiaojin, 2015. "Review on the externalities of hydropower: A comparison between large and small hydropower projects in Tibet based on the CO2 equivalent," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 176-185.
    7. Wang, Hongsheng & Wang, Yunxia & Wang, Haikun & Liu, Miaomiao & Zhang, Yanxia & Zhang, Rongrong & Yang, Jie & Bi, Jun, 2014. "Mitigating greenhouse gas emissions from China's cities: Case study of Suzhou," Energy Policy, Elsevier, vol. 68(C), pages 482-489.
    8. Varun, & Prakash, Ravi & Bhat, I.K., 2012. "Life cycle greenhouse gas emissions estimation for small hydropower schemes in India," Energy, Elsevier, vol. 44(1), pages 498-508.
    9. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    10. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    11. Gagnon, Luc & van de Vate, Joop F., 1997. "Greenhouse gas emissions from hydropower : The state of research in 1996," Energy Policy, Elsevier, vol. 25(1), pages 7-13, January.
    12. Atilgan, Burcin & Azapagic, Adisa, 2016. "Renewable electricity in Turkey: Life cycle environmental impacts," Renewable Energy, Elsevier, vol. 89(C), pages 649-657.
    13. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    14. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    15. Demarty, M. & Bastien, J., 2011. "GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements," Energy Policy, Elsevier, vol. 39(7), pages 4197-4206, July.
    16. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gemechu, Eskinder & Kumar, Amit, 2022. "A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    3. Ge, Zewen & Geng, Yong & Wei, Wendong & Jiang, Mingkun & Chen, Bin & Li, Jiashuo, 2023. "Embodied carbon emissions induced by the construction of hydropower infrastructure in China," Energy Policy, Elsevier, vol. 173(C).
    4. Kirchherr, Julian & Matthews, Nathanial, 2018. "Technology transfer in the hydropower industry: An analysis of Chinese dam developers’ undertakings in Europe and Latin America," Energy Policy, Elsevier, vol. 113(C), pages 546-558.
    5. Levasseur, A. & Mercier-Blais, S. & Prairie, Y.T. & Tremblay, A. & Turpin, C., 2021. "Improving the accuracy of electricity carbon footprint: Estimation of hydroelectric reservoir greenhouse gas emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    6. Mahmud, M. A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2019. "A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe," Applied Energy, Elsevier, vol. 250(C), pages 198-214.
    7. Jacek Brożyna & Grzegorz Mentel & Eva Ivanová & Gennadii Sorokin, 2019. "Classification of Renewable Sources of Electricity in the Context of Sustainable Development of the New EU Member States," Energies, MDPI, vol. 12(12), pages 1-22, June.
    8. Kongyang Nhiakao & Helmut Yabar & Takeshi Mizunoya, 2022. "Cost-Benefit Analysis of the Nam Che 1 Hydropower Plant, Thathom District, Laos: An Ex-Post Analysis," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    9. Castro Verdezoto, Pedro L. & Vidoza, Jorge A. & Gallo, Waldyr L.R., 2019. "Analysis and projection of energy consumption in Ecuador: Energy efficiency policies in the transportation sector," Energy Policy, Elsevier, vol. 134(C).
    10. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    12. Janeth Carolina Godoy & Daniel Villamar & Rafael Soria & César Vaca & Thomas Hamacher & Freddy Ordóñez, 2021. "Preparing the Ecuador’s Power Sector to Enable a Large-Scale Electric Land Transport," Energies, MDPI, vol. 14(18), pages 1-22, September.
    13. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Hosseini, Seyed Mohsen & Kanagaraj, N. & Sadeghi, Shahrbanoo & Yousefi, Hossein, 2022. "Midpoint and endpoint impacts of electricity generation by renewable and nonrenewable technologies: A case study of Alberta, Canada," Renewable Energy, Elsevier, vol. 197(C), pages 22-39.
    15. Li, Mingxu & He, Nianpeng, 2022. "Carbon intensity of global existing and future hydropower reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    16. Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Chen, Fu & Li, Weidong, 2018. "Hydropower curtailment in Yunnan Province, southwestern China: Constraint analysis and suggestions," Renewable Energy, Elsevier, vol. 121(C), pages 700-711.
    17. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo & Soares, Isabel, 2020. "Probabilistic multicriteria environmental assessment of power plants: A global approach," Applied Energy, Elsevier, vol. 260(C).
    18. Arkadiusz Piwowar & Maciej Dzikuć, 2022. "Water Energy in Poland in the Context of Sustainable Development," Energies, MDPI, vol. 15(21), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gemechu, Eskinder & Kumar, Amit, 2022. "A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    3. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems," Sustainability, MDPI, vol. 8(6), pages 1-14, June.
    4. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    5. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.
    6. Gkousis, Spiros & Welkenhuysen, Kris & Compernolle, Tine, 2022. "Deep geothermal energy extraction, a review on environmental hotspots with focus on geo-technical site conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Gallagher, John & Styles, David & McNabola, Aonghus & Williams, A. Prysor, 2015. "Making green technology greener: Achieving a balance between carbon and resource savings through ecodesign in hydropower systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 11-17.
    8. Xuerong Li & Faliang Gui & Qingpeng Li, 2019. "Can Hydropower Still Be Considered a Clean Energy Source? Compelling Evidence from a Middle-Sized Hydropower Station in China," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    9. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    10. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    11. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    12. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    13. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Menberg, Kathrin & Heberle, Florian & Bott, Christoph & Brüggemann, Dieter & Bayer, Peter, 2021. "Environmental performance of a geothermal power plant using a hydrothermal resource in the Southern German Molasse Basin," Renewable Energy, Elsevier, vol. 167(C), pages 20-31.
    15. Raadal, Hanne Lerche & Gagnon, Luc & Modahl, Ingunn Saur & Hanssen, Ole Jørgen, 2011. "Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3417-3422, September.
    16. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    17. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    18. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    19. Hosseini, Seyed Mohsen & Kanagaraj, N. & Sadeghi, Shahrbanoo & Yousefi, Hossein, 2022. "Midpoint and endpoint impacts of electricity generation by renewable and nonrenewable technologies: A case study of Alberta, Canada," Renewable Energy, Elsevier, vol. 197(C), pages 22-39.
    20. Zhang, Jin & Xu, Linyu & Li, Xiaojin, 2015. "Review on the externalities of hydropower: A comparison between large and small hydropower projects in Tibet based on the CO2 equivalent," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 176-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:112:y:2017:i:c:p:209-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.