IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v219y2025ics1364032125005143.html
   My bibliography  Save this article

A systematic review on the application of lifecycle-based approaches in assessing sustainability of hydropower

Author

Listed:
  • Mwakangale, Jacqueline
  • Cook, David
  • Ögmundarson, Ólafur
  • Davíðsdóttir, Brynhildur

Abstract

The global push for renewable energy increase, including hydropower, as outlined in the Paris Agreement and the Sustainable Development Goals (SDGs), emphasizes the need for systematic evaluations to support informed decisions for sustainable growth and development of hydropower sources. This systematic literature review examines the current state of research and highlights gaps related to systematic approaches such as life cycle assessment (LCA), life cycle costing (LCC), social life cycle assessment (S-LCA) and life cycle sustainability assessment (LCSA) in evaluating impacts of hydropower systems. An analysis of literature from the Scopus and Web of Science databases between January 2013 and April 2025, using the PSALSAR framework, revealed that studies focused on LCA dominated at 98 %, with S-LCA studies accounted for only 2 %, and no studies on LCC or LCSA. Geographically, the identified studies were concentrated in Asia, with minimal representation from Africa. This implies a need for lifecycle-based approach studies, particularly in sub-Saharan Africa. The current global agenda to decarbonize the energy sector has led to more studies evaluating the life cycle greenhouse gas emissions. Other critical environmental indicators such as water and land use are less evaluated, which are imperative parameters when realising hydropower potential. Moreover, inconsistencies in conducting LCA studies can undermine the credibility of LCA approach in delivering reliable results; thus, a comprehensive LCA covering all impact categories is necessary. Additionally, it is essential to standardize methods for assessing reservoir emissions and operative water use alongside the LCA approach to provide accurate estimates and reliable results for decision-makers.

Suggested Citation

  • Mwakangale, Jacqueline & Cook, David & Ögmundarson, Ólafur & Davíðsdóttir, Brynhildur, 2025. "A systematic review on the application of lifecycle-based approaches in assessing sustainability of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:rensus:v:219:y:2025:i:c:s1364032125005143
    DOI: 10.1016/j.rser.2025.115841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125005143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhe & Du, Hailong & Xiao, Yan & Guo, Jinsong, 2017. "Carbon footprints of two large hydro-projects in China: Life-cycle assessment according to ISO/TS 14067," Renewable Energy, Elsevier, vol. 114(PB), pages 534-546.
    2. Christina Wulf & Jasmin Werker & Christopher Ball & Petra Zapp & Wilhelm Kuckshinrichs, 2019. "Review of Sustainability Assessment Approaches Based on Life Cycles," Sustainability, MDPI, vol. 11(20), pages 1-43, October.
    3. Briones Hidrovo, Andrei & Uche, Javier & Martínez-Gracia, Amaya, 2017. "Accounting for GHG net reservoir emissions of hydropower in Ecuador," Renewable Energy, Elsevier, vol. 112(C), pages 209-221.
    4. Raadal, Hanne Lerche & Gagnon, Luc & Modahl, Ingunn Saur & Hanssen, Ole Jørgen, 2011. "Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3417-3422, September.
    5. Falchetta, Giacomo & Gernaat, David E.H.J. & Hunt, Julian & Sterl, Sebastian, 2019. "Hydropower dependency and climate change in sub-Saharan Africa: A nexus framework and evidence-based review," Earth Arxiv w7rj3, Center for Open Science.
    6. Gemechu, Eskinder & Kumar, Amit, 2022. "A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Wang, Like & Wang, Yuan & Du, Huibin & Zuo, Jian & Yi Man Li, Rita & Zhou, Zhihua & Bi, Fenfen & Garvlehn, McSimon P., 2019. "A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study," Applied Energy, Elsevier, vol. 249(C), pages 37-45.
    8. Sheldon, Seth & Hadian, Saeed & Zik, Ory, 2015. "Beyond carbon: Quantifying environmental externalities as energy for hydroelectric and nuclear power," Energy, Elsevier, vol. 84(C), pages 36-44.
    9. Adamantia Zoi Vougioukli & Eleni Didaskalou & Dimitrios Georgakellos, 2017. "Financial Appraisal of Small Hydro-Power Considering the Cradle-to-Grave Environmental Cost: A Case from Greece," Energies, MDPI, vol. 10(4), pages 1-20, March.
    10. Gagnon, Luc & van de Vate, Joop F., 1997. "Greenhouse gas emissions from hydropower : The state of research in 1996," Energy Policy, Elsevier, vol. 25(1), pages 7-13, January.
    11. Ting Jiang & Zhenzhong Shen & Yang Liu & Yiyang Hou, 2018. "Carbon Footprint Assessment of Four Normal Size Hydropower Stations in China," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    12. Fritz Balkau & Alberto Bezama & Guido Sonnemann, 2024. "An introduction to sustainable development and LCSA," Chapters, in: Sonia Valdivia & Guido Sonnemann (ed.), Handbook on Life Cycle Sustainability Assessment, chapter 1, pages 2-16, Edward Elgar Publishing.
    13. Sara Sousa & Anabela Botelho & Lígia M. Costa Pinto & Marieta Valente, 2019. "How Relevant Are Non-Use Values and Perceptions in Economic Valuations? The Case of Hydropower Plants," Energies, MDPI, vol. 12(15), pages 1-18, August.
    14. Levasseur, A. & Mercier-Blais, S. & Prairie, Y.T. & Tremblay, A. & Turpin, C., 2021. "Improving the accuracy of electricity carbon footprint: Estimation of hydroelectric reservoir greenhouse gas emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    15. Darmawi, & Sipahutar, Riman & Bernas, Siti Masreah & Imanuddin, Momon Sodik, 2013. "Renewable energy and hydropower utilization tendency worldwide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 213-215.
    16. Mahmud, M. A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2019. "A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe," Applied Energy, Elsevier, vol. 250(C), pages 198-214.
    17. Merida, Vincent Elijiah & Cook, David & Ögmundarson, Ólafur & Davíðsdóttir, Brynhildur, 2022. "Ecosystem services and disservices of meat and dairy production: A systematic literature review," Ecosystem Services, Elsevier, vol. 58(C).
    18. Scherer, Laura & Pfister, Stephan, 2016. "Global water footprint assessment of hydropower," Renewable Energy, Elsevier, vol. 99(C), pages 711-720.
    19. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    20. Xuerong Li & Faliang Gui & Qingpeng Li, 2019. "Can Hydropower Still Be Considered a Clean Energy Source? Compelling Evidence from a Middle-Sized Hydropower Station in China," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gemechu, Eskinder & Kumar, Amit, 2022. "A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    4. Ion V. Ion & Antoaneta Ene, 2021. "Evaluation of Greenhouse Gas Emissions from Reservoirs: A Review," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    5. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo & Soares, Isabel, 2020. "Probabilistic multicriteria environmental assessment of power plants: A global approach," Applied Energy, Elsevier, vol. 260(C).
    6. Mahmud, M. A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2019. "A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe," Applied Energy, Elsevier, vol. 250(C), pages 198-214.
    7. Hosseini, Seyed Mohsen & Kanagaraj, N. & Sadeghi, Shahrbanoo & Yousefi, Hossein, 2022. "Midpoint and endpoint impacts of electricity generation by renewable and nonrenewable technologies: A case study of Alberta, Canada," Renewable Energy, Elsevier, vol. 197(C), pages 22-39.
    8. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    9. Taitiya Kenneth Yuguda & Yi Li & Bobby Shekarau Luka & Goziya William Dzarma, 2020. "Incorporating Reservoir Greenhouse Gas Emissions into Carbon Footprint of Sugar Produced from Irrigated Sugarcane in Northeastern Nigeria," Sustainability, MDPI, vol. 12(24), pages 1-24, December.
    10. Chen, Xiuzhi & Liu, Chang & van Oel, Pieter & Mergia Mekonnen, Mesfin & Thorp, Kelly R. & Yin, Tuo & Wang, Jinyan & Muhammad, Tahir & Li, Yunkai, 2022. "Water and carbon risks within hydropower development on national scale," Applied Energy, Elsevier, vol. 325(C).
    11. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems," Sustainability, MDPI, vol. 8(6), pages 1-14, June.
    12. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.
    13. Sovacool, Benjamin K. & Bulan, L.C., 2012. "Energy security and hydropower development in Malaysia: The drivers and challenges facing the Sarawak Corridor of Renewable Energy (SCORE)," Renewable Energy, Elsevier, vol. 40(1), pages 113-129.
    14. Gallagher, John & Styles, David & McNabola, Aonghus & Williams, A. Prysor, 2015. "Making green technology greener: Achieving a balance between carbon and resource savings through ecodesign in hydropower systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 11-17.
    15. Vanessa Cardoso de Albuquerque & Rodrigo Flora Calili & Maria Fatima Ludovico de Almeida & Rodolpho Albuquerque & Tarcisio Castro & Rafael Kelman, 2025. "Integrated Spatiotemporal Life Cycle Assessment Framework for Hydroelectric Power Generation in Brazil," Energies, MDPI, vol. 18(21), pages 1-22, October.
    16. Wang, Yongpei & Yan, Weilong & Zhuang, Shangwen & Zhang, Qian, 2019. "Competition or complementarity ? The hydropower and thermal power nexus in China," Renewable Energy, Elsevier, vol. 138(C), pages 531-541.
    17. Xuerong Li & Faliang Gui & Qingpeng Li, 2019. "Can Hydropower Still Be Considered a Clean Energy Source? Compelling Evidence from a Middle-Sized Hydropower Station in China," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    18. Briones Hidrovo, Andrei & Uche, Javier & Martínez-Gracia, Amaya, 2017. "Accounting for GHG net reservoir emissions of hydropower in Ecuador," Renewable Energy, Elsevier, vol. 112(C), pages 209-221.
    19. Ge, Zewen & Geng, Yong & Wei, Wendong & Jiang, Mingkun & Chen, Bin & Li, Jiashuo, 2023. "Embodied carbon emissions induced by the construction of hydropower infrastructure in China," Energy Policy, Elsevier, vol. 173(C).
    20. Othman, Mohd Edzham Fareez & Sidek, Lariyah Mohd & Basri, Hidayah & El-Shafie, Ahmed & Ahmed, Ali Najah, 2025. "Climate challenges for sustainable hydropower development and operational resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:219:y:2025:i:c:s1364032125005143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.