IDEAS home Printed from https://ideas.repec.org/p/osf/eartha/w7rj3.html
   My bibliography  Save this paper

Hydropower dependency and climate change in sub-Saharan Africa: A nexus framework and evidence-based review

Author

Listed:
  • Falchetta, Giacomo
  • Gernaat, David E.H.J.
  • Hunt, Julian
  • Sterl, Sebastian

Abstract

In sub-Saharan Africa, 160 million grid-connected electricity consumers live in countries where hydropower accounts for over 50% of total power supply. A warmer climate with more frequent and intense extremes could result in supply reliability issues. Here, (i) a robust framework to highlight the interdependencies between hydropower, water availability, and climate change is proposed, (ii) the state-of-the art literature on the projected impacts of climate change on hydropower in sub-Saharan Africa is reviewed, and (iii) supporting evidence on past trends and current pathways of power mix diversification, drought incidence, and climate change projections is provided. We find that only few countries have pursued a diversification strategy away from hydropower over the last three decades, while others' expansion plans will reinforce the dependency. This will occur irrespective of the fact that some of the largest river basins have experienced a significant drying during the last century. Agreement is found on likely positive impacts of climate change on East Africa's hydropower potential, negative impacts in West and Southern Africa, and substantial uncertainty in Central Africa. Irrespective of the absolute change in gross technical potential, more frequent and intense extremes are projected. One possible paradigm to increase resilience and fulfil the pledges of the Paris Agreement is a synergetic planning and management of hydropower and variable renewables.

Suggested Citation

  • Falchetta, Giacomo & Gernaat, David E.H.J. & Hunt, Julian & Sterl, Sebastian, 2019. "Hydropower dependency and climate change in sub-Saharan Africa: A nexus framework and evidence-based review," Earth Arxiv w7rj3, Center for Open Science.
  • Handle: RePEc:osf:eartha:w7rj3
    DOI: 10.31219/osf.io/w7rj3
    as

    Download full text from publisher

    File URL: https://osf.io/download/5d6eca37536cf50019896ab0/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/w7rj3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vignesh Sridharan & Oliver Broad & Abhishek Shivakumar & Mark Howells & Brent Boehlert & David G. Groves & H-Holger Rogner & Constantinos Taliotis & James E. Neumann & Kenneth M. Strzepek & Robert Lem, 2019. "Resilience of the Eastern African electricity sector to climate driven changes in hydropower generation," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Eggoh, Jude C. & Bangake, Chrysost & Rault, Christophe, 2011. "Energy consumption and economic growth revisited in African countries," Energy Policy, Elsevier, vol. 39(11), pages 7408-7421.
    3. Cole, Matthew A. & Elliott, Robert J.R. & Strobl, Eric, 2014. "Climate Change, Hydro-Dependency, and the African Dam Boom," World Development, Elsevier, vol. 60(C), pages 84-98.
    4. Sándor Szabó & Magda Moner-Girona & Ioannis Kougias & Rob Bailis & Katalin Bódis, 2016. "Identification of advantageous electricity generation options in sub-Saharan Africa integrating existing resources," Nature Energy, Nature, vol. 1(10), pages 1-8, October.
    5. repec:ipg:wpaper:2014-454 is not listed on IDEAS
    6. Williams S Ebhota & Freddie L Inambao, 2017. "Facilitating greater energy access in rural and remote areas of sub-Saharan Africa: Small hydropower," Energy & Environment, , vol. 28(3), pages 316-329, May.
    7. Ayobami Solomon Oyewo & Javier Farfan & Pasi Peltoniemi & Christian Breyer, 2018. "Repercussion of Large Scale Hydro Dam Deployment: The Case of Congo Grand Inga Hydro Project," Energies, MDPI, vol. 11(4), pages 1-30, April.
    8. D. Lumbroso & G. Woolhouse & L. Jones, 2015. "A review of the consideration of climate change in the planning of hydropower schemes in sub-Saharan Africa," Climatic Change, Springer, vol. 133(4), pages 621-633, December.
    9. DeNooyer, Tyler A. & Peschel, Joshua M. & Zhang, Zhenxing & Stillwell, Ashlynn S., 2016. "Integrating water resources and power generation: The energy–water nexus in Illinois," Applied Energy, Elsevier, vol. 162(C), pages 363-371.
    10. David Grey & Claudia Sadoff & Genevieve Connors, 2016. "Effective Cooperation on Transboundary Waters," World Bank Publications - Reports 24047, The World Bank Group.
    11. Raffaello Cervigni & Rikard Liden & James E. Neumann & Kenneth M. Strzepek, 2015. "Enhancing the Climate Resilience of Africa's Infrastructure," World Bank Publications - Books, The World Bank Group, number 21875.
    12. Rogeau, A. & Girard, R. & Kariniotakis, G., 2017. "A generic GIS-based method for small Pumped Hydro Energy Storage (PHES) potential evaluation at large scale," Applied Energy, Elsevier, vol. 197(C), pages 241-253.
    13. Alexandros Korkovelos & Dimitrios Mentis & Shahid Hussain Siyal & Christopher Arderne & Holger Rogner & Morgan Bazilian & Mark Howells & Hylke Beck & Ad De Roo, 2018. "A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    14. Barasa, Maulidi & Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2018. "A cost optimal resolution for Sub-Saharan Africa powered by 100% renewables in 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 440-457.
    15. Obinna Ubani, 2013. "Determinants of the dynamics of electricity consumption in Nigeria," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 37(2), pages 149-161, June.
    16. Wolde-Rufael, Yemane, 2006. "Electricity consumption and economic growth: a time series experience for 17 African countries," Energy Policy, Elsevier, vol. 34(10), pages 1106-1114, July.
    17. Matthew Cole, 2004. "Economic growth and water use," Applied Economics Letters, Taylor & Francis Journals, vol. 11(1), pages 1-4.
    18. Declan Conway & Emma Archer van Garderen & Delphine Deryng & Steve Dorling & Tobias Krueger & Willem Landman & Bruce Lankford & Karen Lebek & Tim Osborn & Claudia Ringler & James Thurlow & Tingju Zhu , 2015. "Climate and southern Africa's water–energy–food nexus," Nature Climate Change, Nature, vol. 5(9), pages 837-846, September.
    19. David E. H. J. Gernaat & Patrick W. Bogaart & Detlef P. van Vuuren & Hester Biemans & Robin Niessink, 2017. "High-resolution assessment of global technical and economic hydropower potential," Nature Energy, Nature, vol. 2(10), pages 821-828, October.
    20. Mouratiadou, Ioanna & Biewald, Anne & Pehl, Michaja & Bonsch, Markus & Baumstark, Lavinia & Klein, David & Popp, Alexander & Luderer, Gunnar & Kriegler, Elmar, 2016. "The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways," Environmental Science & Policy, Elsevier, vol. 64(C), pages 48-58.
    21. Gaudard, Ludovic & Avanzi, Francesco & De Michele, Carlo, 2018. "Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant," Applied Energy, Elsevier, vol. 210(C), pages 604-612.
    22. Rosa Duarte & Vicente Pinilla & Ana Serrano, 2014. "Looking backward to look forward: water use and economic growth from a long-term perspective," Applied Economics, Taylor & Francis Journals, vol. 46(2), pages 212-224, January.
    23. Gregor Schwerhoff & Mouhamadou Sy, 2019. "Developing Africa’s energy mix," Climate Policy, Taylor & Francis Journals, vol. 19(1), pages 108-124, January.
    24. Declan Conway & Carole Dalin & Willem A. Landman & Timothy J. Osborn, 2017. "Hydropower plans in eastern and southern Africa increase risk of concurrent climate-related electricity supply disruption," Nature Energy, Nature, vol. 2(12), pages 946-953, December.
    25. Louw, Kate & Conradie, Beatrice & Howells, Mark & Dekenah, Marcus, 2008. "Determinants of electricity demand for newly electrified low-income African households," Energy Policy, Elsevier, vol. 36(8), pages 2814-2820, August.
    26. Buitenzorgy, Meilanie & Ancev, Tihomir, 2013. "Global Water Withdrawal Trends: Does Democracy Matters?," 2013 Conference (57th), February 5-8, 2013, Sydney, Australia 152190, Australian Agricultural and Resource Economics Society.
    27. Byman Hamududu & Aanund Killingtveit, 2012. "Assessing Climate Change Impacts on Global Hydropower," Energies, MDPI, vol. 5(2), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bajo-Buenestado, Raúl, 2021. "The effect of blackouts on household electrification status: Evidence from Kenya," Energy Economics, Elsevier, vol. 94(C).
    2. Bazzana, Davide & Zaitchik, Benjamin & Gilioli, Gianni, 2020. "Impact of water and energy infrastructure on local well-being: an agent-based analysis of the water-energy-food nexus," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 165-176.
    3. Kenfack, Joseph & Nzotcha, Urbain & Voufo, Joseph & Ngohe-Ekam, Paul Salomon & Nsangou, Jean Calvin & Bignom, Blaise, 2021. "Cameroon's hydropower potential and development under the vision of Central Africa power pool (CAPP): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Grace C. Wu & Ranjit Deshmukh & Anne Trainor & Anagha Uppal & A. F. M. Kamal Chowdhury & Carlos Baez & Erik Martin & Jonathan Higgins & Ana Mileva & Kudakwashe Ndhlukula, 2024. "Avoiding ecosystem and social impacts of hydropower, wind, and solar in Southern Africa’s low-carbon electricity system," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Giacomo Falchetta & Manfred Hafner & Simone Tagliapietra, 2020. "Pathways to 100% Electrification in East Africa by 2030," The Energy Journal, , vol. 41(3), pages 255-290, May.
    6. Nonki, Rodric M. & Amoussou, Ernest & Lennard, Christopher J. & Lenouo, André & Tshimanga, Raphael M. & Houndenou, Constant, 2023. "Quantification and allocation of uncertainties of climate change impacts on hydropower potential under 1.5 °C and 2.0 °C global warming levels in the headwaters of the Benue River Basin, Cameroon," Renewable Energy, Elsevier, vol. 215(C).
    7. Katarzyna Kubiak-Wójcicka & Leszek Szczęch, 2021. "Dynamics of Electricity Production against the Backdrop of Climate Change: A Case Study of Hydropower Plants in Poland," Energies, MDPI, vol. 14(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    2. Tidwell, Vincent C. & Gunda, Thushara & Gayoso, Natalie, 2021. "Plant-level characteristics could aid in the assessment of water-related threats to the electric power sector," Applied Energy, Elsevier, vol. 282(PA).
    3. Roger Cremades & Hermine Mitter & Nicu Constantin Tudose & Anabel Sanchez-Plaza & Anil Graves & Annelies Broekman & Steffen Bender & Carlo Giupponi & Phoebe Koundouri & Muhamad Bahri & Sorin Cheval & , 2019. "Ten principles to integrate the water-energy-land nexus with climate services for co-producing local and regional integrated assessments," DEOS Working Papers 1915, Athens University of Economics and Business.
    4. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    5. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    6. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2017. "The role of glacier retreat for Swiss hydropower production," Earth Arxiv 7z96d, Center for Open Science.
    7. Haas, Jannik & Prieto-Miranda, Luis & Ghorbani, Narges & Breyer, Christian, 2022. "Revisiting the potential of pumped-hydro energy storage: A method to detect economically attractive sites," Renewable Energy, Elsevier, vol. 181(C), pages 182-193.
    8. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2019. "The role of glacier retreat for Swiss hydropower production," Renewable Energy, Elsevier, vol. 132(C), pages 615-627.
    9. Mohamed El Hedi Arouri & Adel Ben Youssef & Hatem M'Henni & Christophe Rault, 2014. "Energy use and economic growth in Africa: a panel Granger-causality investigation," Economics Bulletin, AccessEcon, vol. 34(2), pages 1247-1258.
    10. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Garrote, Luis, 2019. "Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants," Applied Energy, Elsevier, vol. 256(C).
    11. Wesseh, Presley K. & Lin, Boqiang, 2017. "Is renewable energy a model for powering Eastern African countries transition to industrialization and urbanization?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 909-917.
    12. Hennig, Thomas, 2016. "Damming the transnational Ayeyarwady basin. Hydropower and the water-energy nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1232-1246.
    13. Obringer, R. & Kumar, R. & Nateghi, R., 2019. "Analyzing the climate sensitivity of the coupled water-electricity demand nexus in the Midwestern United States," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Vural, Gulfer, 2020. "Renewable and non-renewable energy-growth nexus: A panel data application for the selected Sub-Saharan African countries," Resources Policy, Elsevier, vol. 65(C).
    15. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    16. Ayobami Solomon Oyewo & Javier Farfan & Pasi Peltoniemi & Christian Breyer, 2018. "Repercussion of Large Scale Hydro Dam Deployment: The Case of Congo Grand Inga Hydro Project," Energies, MDPI, vol. 11(4), pages 1-30, April.
    17. repec:ipg:wpaper:2014-481 is not listed on IDEAS
    18. Gulagi, Ashish & Ram, Manish & Solomon, A.A. & Khan, Musharof & Breyer, Christian, 2020. "Current energy policies and possible transition scenarios adopting renewable energy: A case study for Bangladesh," Renewable Energy, Elsevier, vol. 155(C), pages 899-920.
    19. Eléazar Zerbo, 2017. "Energy consumption and economic growth in Sub-Saharan African countries: Further evidence," Economics Bulletin, AccessEcon, vol. 37(3), pages 1720-1744.
    20. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    21. Alexis Vessat, 2016. "Energy Consumption-Economic Growth nexus in Sub-Saharan Countries: what can we learn from a meta-analysis? (1996-2016)," Post-Print hal-01944514, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:eartha:w7rj3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://eartharxiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.