IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v92y2018icp440-457.html
   My bibliography  Save this article

A cost optimal resolution for Sub-Saharan Africa powered by 100% renewables in 2030

Author

Listed:
  • Barasa, Maulidi
  • Bogdanov, Dmitrii
  • Oyewo, Ayobami Solomon
  • Breyer, Christian

Abstract

This paper determines a least cost electricity solution for Sub-Saharan Africa (SSA). The power system discussed in this study is hourly resolved and based on 100% Renewable Energy (RE) technologies. Sub-Saharan Africa was subdivided into 16 sub-regions. Four different scenarios were considered involving the setup of a high voltage direct current (HVDC) transmission grid. An integrated scenario that considers water desalination and industrial gas production was also analyzed. This study reveals that RE is sufficient to cover 866.4 TWh estimated electricity demand for 2030 and additional electricity needed to fulfill 319 million m3 of water desalination and 268 TWhLHV of synthetic natural gas demand. Existing hydro dams can be used as virtual batteries for solar PV and wind electricity storage, diminishing the role of other storage technologies. The results for total levelised cost of electricity (LCOE) decreases from 57.8 €/MWh for a highly decentralized to 54.7 €/MWh for a more centralized grid scenario. For the integrated scenario, including water desalination and synthetic natural gas demand, the levelised cost of gas and the levelised cost of water are 113.7 €/MWhLHV and 1.39 €/m3, respectively. A reduction of 6% in total cost and 19% in electricity generation was realized as a result of integrating desalination and power-to-gas sectors into the system. A review of studies on the energy future of Sub-Saharan Africa provides the basis for a detailed discussion of the new results presented.

Suggested Citation

  • Barasa, Maulidi & Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2018. "A cost optimal resolution for Sub-Saharan Africa powered by 100% renewables in 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 440-457.
  • Handle: RePEc:eee:rensus:v:92:y:2018:i:c:p:440-457
    DOI: 10.1016/j.rser.2018.04.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118303277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.04.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vittorio Sessa & Ramchandra Bhandari & Abdramane Ba, 2021. "Rural Electrification Pathways: An Implementation of LEAP and GIS Tools in Mali," Energies, MDPI, vol. 14(11), pages 1-19, June.
    2. Hanieh Seyedhashemi & Benoît Hingray & Christophe Lavaysse & Théo Chamarande, 2021. "The Impact of Low-Resource Periods on the Reliability of Wind Power Systems for Rural Electrification in Africa," Energies, MDPI, vol. 14(11), pages 1-18, May.
    3. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    4. Falchetta, Giacomo & Gernaat, David E.H.J. & Hunt, Julian & Sterl, Sebastian, 2019. "Hydropower dependency and climate change in sub-Saharan Africa: A nexus framework and evidence-based review," Earth Arxiv w7rj3, Center for Open Science.
    5. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    6. Oyewo, Ayobami Solomon & Aghahosseini, Arman & Ram, Manish & Breyer, Christian, 2020. "Transition towards decarbonised power systems and its socio-economic impacts in West Africa," Renewable Energy, Elsevier, vol. 154(C), pages 1092-1112.
    7. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    8. Mukeshimana, Marie Claire & Zhao, Zhen-Yu & Nshimiyimana, Jean Pierre, 2021. "Evaluating strategies for renewable energy development in Rwanda: An integrated SWOT – ISM analysis," Renewable Energy, Elsevier, vol. 176(C), pages 402-414.
    9. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    10. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    11. Bissiri, M. & Moura, P. & Figueiredo, N.C. & Silva, P.P., 2020. "Towards a renewables-based future for West African States: A review of power systems planning approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Gulagi, Ashish & Ram, Manish & Solomon, A.A. & Khan, Musharof & Breyer, Christian, 2020. "Current energy policies and possible transition scenarios adopting renewable energy: A case study for Bangladesh," Renewable Energy, Elsevier, vol. 155(C), pages 899-920.
    13. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    14. Menyeh, Bridget Okyerebea, 2021. "Financing electricity access in Africa: A choice experiment study of household investor preferences for renewable energy investments in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. Karbassi, Veis & Trotter, Philipp A. & Walther, Grit, 2023. "Diversifying the African energy system: Economic versus equitable allocation of renewable electricity and e-fuel production," Applied Energy, Elsevier, vol. 350(C).
    16. Mensah, Theophilus Nii Odai & Oyewo, Ayobami Solomon & Breyer, Christian, 2021. "The role of biomass in sub-Saharan Africa’s fully renewable power sector – The case of Ghana," Renewable Energy, Elsevier, vol. 173(C), pages 297-317.
    17. Sweerts, Bart & Longa, Francesco Dalla & van der Zwaan, Bob, 2019. "Financial de-risking to unlock Africa's renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 75-82.
    18. Ram, Manish & Aghahosseini, Arman & Breyer, Christian, 2020. "Job creation during the global energy transition towards 100% renewable power system by 2050," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    19. Robert Van Buskirk & Lawrence Kachione & Gilbert Robert & Rachel Kanyerere & Christina Gilbert & James Majoni, 2021. "How to Make Off-Grid Solar Electric Cooking Cheaper Than Wood-Based Cooking," Energies, MDPI, vol. 14(14), pages 1-21, July.
    20. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    21. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:92:y:2018:i:c:p:440-457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.