IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7432-d1273746.html
   My bibliography  Save this article

Power-System Flexibility: A Necessary Complement to Variable Renewable Energy Optimal Capacity Configuration

Author

Listed:
  • Denis Juma

    (African Centre of Excellence in Energy for Sustainable Development, College of Science & Technology, University of Rwanda, KN 67 Street Nyarugenge, Kigali P.O. Box 3900, Rwanda)

  • Josiah Munda

    (Department of Electrical Engineering, Tshwane University of Technology, Pretoria X680-0001, South Africa)

  • Charles Kabiri

    (African Centre of Excellence in Energy for Sustainable Development, College of Science & Technology, University of Rwanda, KN 67 Street Nyarugenge, Kigali P.O. Box 3900, Rwanda)

Abstract

Comprehending the spatiotemporal complementarity of variable renewable energy (VRE) sources and their supplemental ability to meet electricity demand is a promising move towards broadening their share in the power supply mix without sacrificing either supply security or overall cost efficiency of power system operation. Increasing VRE share into the energy mix has to be followed with measures to manage technical challenges associated with grid operations. Most sub-Saharan countries can be considered ‘greenfield’ due to their relatively low power generation baseline and are more likely to be advantaged in planning their future grids around the idea of integrating high VRE sources into the grid from the outset. An essential measure for achieving this objective entails exploring the possibility of integrating renewable hybrid power plants into the existing hydropower grid, leveraging on existing synergies and benefiting from the use of existing infrastructure and grid connection points. This study evaluates the potential for hybridizing existing hydropower-dominated networks to accommodate solar- and wind-energy sources. The existing synergy is quantified using correlation and energy indicators by evaluating complementarity at daily, monthly and annual intervals. The proposed metric serves as a tool to improve planning on increasing the VRE fraction into the existing systems with the aim to achieve optimal power mixes. In comparison to cases in which the same kind of resource is over-planted while expanding installed capacity, the results demonstrate that wind and solar resources hold a positive degree of complementarity, allowing a greater share of VRE sources into the grid. The study shows that Kenya bears favorable climatic conditions that allow hybrid power plant concepts to be widely explored and scaled up on a large and efficient scale. The results can be applicable in other regions and represent an important contribution to promoting the integration of VRE sources into sub-Saharan power grids.

Suggested Citation

  • Denis Juma & Josiah Munda & Charles Kabiri, 2023. "Power-System Flexibility: A Necessary Complement to Variable Renewable Energy Optimal Capacity Configuration," Energies, MDPI, vol. 16(21), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7432-:d:1273746
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diana Cantor & Andrés Ochoa & Oscar Mesa, 2022. "Total Variation-Based Metrics for Assessing Complementarity in Energy Resources Time Series," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    2. François, B. & Borga, M. & Creutin, J.D. & Hingray, B. & Raynaud, D. & Sauterleute, J.F., 2016. "Complementarity between solar and hydro power: Sensitivity study to climate characteristics in Northern-Italy," Renewable Energy, Elsevier, vol. 86(C), pages 543-553.
    3. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    4. Christian M. Grams & Remo Beerli & Stefan Pfenninger & Iain Staffell & Heini Wernli, 2017. "Balancing Europe’s wind-power output through spatial deployment informed by weather regimes," Nature Climate Change, Nature, vol. 7(8), pages 557-562, August.
    5. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    6. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    7. Sebastian Sterl & Dalia Fadly & Stefan Liersch & Hagen Koch & Wim Thiery, 2021. "Linking solar and wind power in eastern Africa with operation of the Grand Ethiopian Renaissance Dam," Nature Energy, Nature, vol. 6(4), pages 407-418, April.
    8. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2019. "Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Cheng, Qian & Liu, Pan & Xia, Jun & Ming, Bo & Cheng, Lei & Chen, Jie & Xie, Kang & Liu, Zheyuan & Li, Xiao, 2022. "Contribution of complementary operation in adapting to climate change impacts on a large-scale wind–solar–hydro system: A case study in the Yalong River Basin, China," Applied Energy, Elsevier, vol. 325(C).
    10. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    11. Sungheum Cho & Hana Kim & Sanghoon Lee & Sangil Kim & Eui-Chan Jeon, 2020. "Optimal energy mix for greenhouse gas reduction with renewable energy – The case of the South Korean electricity sector," Energy & Environment, , vol. 31(6), pages 1055-1076, September.
    12. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    13. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    14. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Djalma M. Falcão & Sun Tao & Glauco N. Taranto & Thiago J. Masseran A. Parreiras & Murilo E. C. Bento & Dany H. Huanca & Hugo Muzitano & Paulo Esmeraldo & Pedro Lima & Lillian Monteath & Roberto Brand, 2024. "Case Studies of Battery Energy Storage System Applications in the Brazilian Transmission System," Energies, MDPI, vol. 17(22), pages 1-16, November.
    2. Emmanuel Ejuh Che & Kang Roland Abeng & Chu Donatus Iweh & George J. Tsekouras & Armand Fopah-Lele, 2025. "The Impact of Integrating Variable Renewable Energy Sources into Grid-Connected Power Systems: Challenges, Mitigation Strategies, and Prospects," Energies, MDPI, vol. 18(3), pages 1-31, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Hoelzen, J. & Silberhorn, D. & Schenke, F. & Stabenow, E. & Zill, T. & Bensmann, A. & Hanke-Rauschenbach, R., 2025. "H2-powered aviation – Optimized aircraft and green LH2 supply in air transport networks," Applied Energy, Elsevier, vol. 380(C).
    3. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).
    4. Seljom, Pernille & Kvalbein, Lisa & Hellemo, Lars & Kaut, Michal & Ortiz, Miguel Muñoz, 2021. "Stochastic modelling of variable renewables in long-term energy models: Dataset, scenario generation & quality of results," Energy, Elsevier, vol. 236(C).
    5. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    6. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    7. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
    8. Alonso Pedrero, Raquel & Pisciella, Paolo & Crespo del Granado, Pedro, 2024. "Fair investment strategies in large energy communities: A scalable Shapley value approach," Energy, Elsevier, vol. 295(C).
    9. Bianchi, Emilio & Guozden, Tomás & Kozulj, Roberto, 2022. "Assessing low frequency variations in solar and wind power and their climatic teleconnections," Renewable Energy, Elsevier, vol. 190(C), pages 560-571.
    10. Rey-Costa, Elona & Elliston, Ben & Green, Donna & Abramowitz, Gab, 2023. "Firming 100% renewable power: Costs and opportunities in Australia's National Electricity Market," Renewable Energy, Elsevier, vol. 219(P1).
    11. López Prol, Javier & de Llano Paz, Fernando & Calvo-Silvosa, Anxo & Pfenninger, Stefan & Staffell, Iain, 2024. "Wind-solar technological, spatial and temporal complementarities in Europe: A portfolio approach," Energy, Elsevier, vol. 292(C).
    12. Mensah, Theophilus Nii Odai & Oyewo, Ayobami Solomon & Bogdanov, Dmitrii & Aghahosseini, Arman & Breyer, Christian, 2024. "Pathway for a fully renewable power sector of Africa by 2050: Emphasising on flexible generation from biomass," Renewable Energy, Elsevier, vol. 234(C).
    13. Lledó, Llorenç & Ramon, Jaume & Soret, Albert & Doblas-Reyes, Francisco-Javier, 2022. "Seasonal prediction of renewable energy generation in Europe based on four teleconnection indices," Renewable Energy, Elsevier, vol. 186(C), pages 420-430.
    14. Radu, David & Berger, Mathias & Dubois, Antoine & Fonteneau, Raphaël & Pandžić, Hrvoje & Dvorkin, Yury & Louveaux, Quentin & Ernst, Damien, 2022. "Assessing the impact of offshore wind siting strategies on the design of the European power system," Applied Energy, Elsevier, vol. 305(C).
    15. Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
    16. Samuel Borroy Vicente & Gregorio Fernández & Noemi Galan & Andrés Llombart Estopiñán & Matteo Salani & Marco Derboni & Vincenzo Giuffrida & Luis Hernández-Callejo, 2024. "Assessment of the Technical Impacts of Electric Vehicle Penetration in Distribution Networks: A Focus on System Management Strategies Integrating Sustainable Local Energy Communities," Sustainability, MDPI, vol. 16(15), pages 1-21, July.
    17. Kühnbach, Matthias & Bekk, Anke & Weidlich, Anke, 2022. "Towards improved prosumer participation: Electricity trading in local markets," Energy, Elsevier, vol. 239(PE).
    18. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    19. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
    20. Bojana Škrbić & Željko Đurišić, 2023. "Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System," Energies, MDPI, vol. 16(7), pages 1-34, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7432-:d:1273746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.