IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp22-39.html
   My bibliography  Save this article

Midpoint and endpoint impacts of electricity generation by renewable and nonrenewable technologies: A case study of Alberta, Canada

Author

Listed:
  • Hosseini, Seyed Mohsen
  • Kanagaraj, N.
  • Sadeghi, Shahrbanoo
  • Yousefi, Hossein

Abstract

Alberta's government resolved to increase the share of renewable technologies in the electricity mix to 30% by 2030. However, renewable technologies also have some environmental impacts in their life cycle that should be assessed before adoption. Aiming to inform policymakers about the environmental impacts of electricity generation in Alberta, this study conducts a life-cycle assessment and estimates the midpoint and endpoint impacts of electricity generation in this territory using the ReCiPe and Cumulative Energy Demand methods. Findings identified coal and lignite power plants as the most hazardous units to human health and ecosystems among nonrenewable technologies. Natural-gas-firing conventional and combined heat and power (CHP) power plants had a comparatively lower damage potential for human health and ecosystems but a higher potential for resources. Hydropower and wind power plants were the most eco-friendly technologies among renewable power plants. Biogas- and wood-chips-firing CHP power plants had comparatively higher impacts at both midpoint and endpoint levels. Their ecosystem damage potential was even higher than coal-firing power plants. Based on findings, producing 1 kWh of high-voltage electricity in Alberta is accompanied by 9.87 MJ fossil-fuel consumption and 811 g–CO2–eq. global warming potential, decreasing by 9.5–27.7% and 41–49%, respectively, if the 30%-renewable goal is accomplished.

Suggested Citation

  • Hosseini, Seyed Mohsen & Kanagaraj, N. & Sadeghi, Shahrbanoo & Yousefi, Hossein, 2022. "Midpoint and endpoint impacts of electricity generation by renewable and nonrenewable technologies: A case study of Alberta, Canada," Renewable Energy, Elsevier, vol. 197(C), pages 22-39.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:22-39
    DOI: 10.1016/j.renene.2022.07.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812201028X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhe & Du, Hailong & Xiao, Yan & Guo, Jinsong, 2017. "Carbon footprints of two large hydro-projects in China: Life-cycle assessment according to ISO/TS 14067," Renewable Energy, Elsevier, vol. 114(PB), pages 534-546.
    2. Beagle, E. & Belmont, E., 2019. "Comparative life cycle assessment of biomass utilization for electricity generation in the European Union and the United States," Energy Policy, Elsevier, vol. 128(C), pages 267-275.
    3. Atilgan, Burcin & Azapagic, Adisa, 2016. "An integrated life cycle sustainability assessment of electricity generation in Turkey," Energy Policy, Elsevier, vol. 93(C), pages 168-186.
    4. Briones Hidrovo, Andrei & Uche, Javier & Martínez-Gracia, Amaya, 2017. "Accounting for GHG net reservoir emissions of hydropower in Ecuador," Renewable Energy, Elsevier, vol. 112(C), pages 209-221.
    5. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    6. Pascale, Andrew & Urmee, Tania & Moore, Andrew, 2011. "Life cycle assessment of a community hydroelectric power system in rural Thailand," Renewable Energy, Elsevier, vol. 36(11), pages 2799-2808.
    7. Yu, Zhiqiang & Ma, Wenhui & Xie, Keqiang & Lv, Guoqiang & Chen, Zhengjie & Wu, Jijun & Yu, Jie, 2017. "Life cycle assessment of grid-connected power generation from metallurgical route multi-crystalline silicon photovoltaic system in China," Applied Energy, Elsevier, vol. 185(P1), pages 68-81.
    8. Gibon, Thomas & Arvesen, Anders & Hertwich, Edgar G., 2017. "Life cycle assessment demonstrates environmental co-benefits and trade-offs of low-carbon electricity supply options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1283-1290.
    9. Mahmud, M. A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2019. "A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe," Applied Energy, Elsevier, vol. 250(C), pages 198-214.
    10. Santoyo-Castelazo, E. & Gujba, H. & Azapagic, A., 2011. "Life cycle assessment of electricity generation in Mexico," Energy, Elsevier, vol. 36(3), pages 1488-1499.
    11. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    12. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    13. Garcia, Rita & Marques, Pedro & Freire, Fausto, 2014. "Life-cycle assessment of electricity in Portugal," Applied Energy, Elsevier, vol. 134(C), pages 563-572.
    14. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    15. Cui, Xiaowei & Hong, Jinglan & Gao, Mingming, 2012. "Environmental impact assessment of three coal-based electricity generation scenarios in China," Energy, Elsevier, vol. 45(1), pages 952-959.
    16. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    17. Atilgan, Burcin & Azapagic, Adisa, 2016. "Renewable electricity in Turkey: Life cycle environmental impacts," Renewable Energy, Elsevier, vol. 89(C), pages 649-657.
    18. Selim Karkour & Yuki Ichisugi & Amila Abeynayaka & Norihiro Itsubo, 2020. "External-Cost Estimation of Electricity Generation in G20 Countries: Case Study Using a Global Life-Cycle Impact-Assessment Method," Sustainability, MDPI, vol. 12(5), pages 1-35, March.
    19. Grafakos, S. & Viero, G. & Reckien, D. & Trigg, K. & Viguie, V. & Sudmant, A. & Graves, C. & Foley, A. & Heidrich, O. & Mirailles, J.M. & Carter, J. & Chang, L.H. & Nador, C. & Liseri, M. & Chelleri, , 2020. "Integration of mitigation and adaptation in urban climate change action plans in Europe: A systematic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Markéta Šerešová & Jiří Štefanica & Monika Vitvarová & Kristina Zakuciová & Petr Wolf & Vladimír Kočí, 2020. "Life Cycle Performance of Various Energy Sources Used in the Czech Republic," Energies, MDPI, vol. 13(21), pages 1-17, November.
    21. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sudip Basack & Shantanu Dutta & Dipasri Saha, 2022. "Installation and Performance Study of a Vertical-Axis Wind Turbine Prototype Model," Sustainability, MDPI, vol. 14(23), pages 1-29, December.
    2. Rosangela Rodrigues Dias & Mariany Costa Deprá & Cristiano Ragagnin de Menezes & Leila Queiroz Zepka & Eduardo Jacob-Lopes, 2023. "The High-Value Product, Bio-Waste, and Eco-Friendly Energy as the Tripod of the Microalgae Biorefinery: Connecting the Dots," Sustainability, MDPI, vol. 15(15), pages 1-15, July.
    3. Rudha Khudhair Mohammed & Hooman Farzaneh, 2023. "Life Cycle Environmental Impacts Assessment of Post-Combustion Carbon Capture for Natural Gas Combined Cycle Power Plant in Iraq, Considering Grassroots and Retrofit Design," Energies, MDPI, vol. 16(3), pages 1-35, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    3. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.
    4. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    5. Gemechu, Eskinder & Kumar, Amit, 2022. "A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo & Soares, Isabel, 2020. "Probabilistic multicriteria environmental assessment of power plants: A global approach," Applied Energy, Elsevier, vol. 260(C).
    7. Mahmud, M. A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2019. "A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe," Applied Energy, Elsevier, vol. 250(C), pages 198-214.
    8. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Orfanos, Neoptolemos & Mitzelos, Dimitris & Sagani, Angeliki & Dedoussis, Vassilis, 2019. "Life-cycle environmental performance assessment of electricity generation and transmission systems in Greece," Renewable Energy, Elsevier, vol. 139(C), pages 1447-1462.
    10. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Selim Karkour & Yuki Ichisugi & Amila Abeynayaka & Norihiro Itsubo, 2020. "External-Cost Estimation of Electricity Generation in G20 Countries: Case Study Using a Global Life-Cycle Impact-Assessment Method," Sustainability, MDPI, vol. 12(5), pages 1-35, March.
    12. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    13. António A. Martins & Marta Simaria & Joaquim Barbosa & Ricardo Barbosa & Daniela T. Silva & Cristina S. Rocha & Teresa M. Mata & Nídia S. Caetano, 2018. "Life cycle assessment tool of electricity generation in Portugal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 129-143, December.
    14. Briones Hidrovo, Andrei & Uche, Javier & Martínez-Gracia, Amaya, 2017. "Accounting for GHG net reservoir emissions of hydropower in Ecuador," Renewable Energy, Elsevier, vol. 112(C), pages 209-221.
    15. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    16. Besseau, Romain & Sacchi, Romain & Blanc, Isabelle & Pérez-López, Paula, 2019. "Past, present and future environmental footprint of the Danish wind turbine fleet with LCA_WIND_DK, an online interactive platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 274-288.
    17. Cho, Hannah Hyunah & Strezov, Vladimir, 2021. "Comparative analysis of the environmental impacts of Australian thermal power stations using direct emission data and GIS integrated methods," Energy, Elsevier, vol. 231(C).
    18. Markéta Šerešová & Jiří Štefanica & Monika Vitvarová & Kristina Zakuciová & Petr Wolf & Vladimír Kočí, 2020. "Life Cycle Performance of Various Energy Sources Used in the Czech Republic," Energies, MDPI, vol. 13(21), pages 1-17, November.
    19. Murillo Vetroni Barros & Cassiano Moro Piekarski & Antonio Carlos De Francisco, 2018. "Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period," Energies, MDPI, vol. 11(6), pages 1-14, June.
    20. Wang, Like & Wang, Yuan & Du, Huibin & Zuo, Jian & Yi Man Li, Rita & Zhou, Zhihua & Bi, Fenfen & Garvlehn, McSimon P., 2019. "A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study," Applied Energy, Elsevier, vol. 249(C), pages 37-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:22-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.