IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125002290.html
   My bibliography  Save this article

Balancing water, power, and carbon: A synergistic optimization framework for mega cascade reservoir operations

Author

Listed:
  • Ning, Zhihao
  • Zhou, Yanlai
  • He, Juntao
  • Tang, Chun
  • Xu, Chong-Yu
  • Chang, Fi-John

Abstract

This study addresses the critical intersection of renewable energy production and carbon emission reduction in the context of intensified human activities and global climate change by proposing an innovative optimization framework for mega cascade reservoirs. Unlike traditional approaches that often prioritize hydropower output or carbon emissions, our framework uniquely integrates a multi-objective optimization model that simultaneously minimizes carbon emissions, mitigates flood risk, and maximizes hydropower output within the physical constraints of cascade reservoir operations. To assess the performance of various impoundment schemes, we apply the Technique for Order Preference by Similarity to Ideal Solution, demonstrating the model's versatility across different inflow scenarios using seven cascade reservoirs in the Yangtze River as case studies. Our findings reveal that, compared to practical operation scheme, the optimal scheme enhances hydropower output by 5.82 billion kW·h/a (5.32 %), increases water supply by 2.68 billion m³ (8.00 %), reduces carbon emissions by 17.31 GgC/a (14.66 %), and lowers carbon intensity by 0.63 kgCO2e/MW·h (15.22 %). This research advances theoretical frameworks for reservoir operations and offers practical implications for policymakers, enabling more informed decision-making to achieve sustainable development goals. The novel integration of water-carbon synergies within reservoir management contributes significantly to the discourse on sustainable energy systems and climate resilience.

Suggested Citation

  • Ning, Zhihao & Zhou, Yanlai & He, Juntao & Tang, Chun & Xu, Chong-Yu & Chang, Fi-John, 2025. "Balancing water, power, and carbon: A synergistic optimization framework for mega cascade reservoir operations," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002290
    DOI: 10.1016/j.renene.2025.122567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Yuqiang & Liao, Shengli & Liu, Benxi & Cheng, Chuntian & Zhao, Hongye & Fang, Zhou & Lu, Jia, 2024. "Short-term load distribution model for cascade giant hydropower stations with complex hydraulic and electrical connections," Renewable Energy, Elsevier, vol. 232(C).
    2. Stevens, Kelly A. & Tang, Tian & Hittinger, Eric, 2023. "Innovation in complementary energy technologies from renewable energy policies," Renewable Energy, Elsevier, vol. 209(C), pages 431-441.
    3. Zhihao Ning & Yanlai Zhou & Fanqi Lin & Ying Zhou & Qi Luo, 2023. "Exploring a Novel Reservoir Impoundment Operation Framework for Facilitating Hydropower Sustainability," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    4. He, Wei & Zhang, Xufan & Zhang, Jian & Xu, Hui & Zhou, Hongxing, 2023. "Regulating outflow temperature for multi-objective operation of cascade reservoirs: A case study," Renewable Energy, Elsevier, vol. 211(C), pages 155-165.
    5. Zhou, Yanlai & Guo, Shenglian & Chang, Fi-John & Xu, Chong-Yu, 2018. "Boosting hydropower output of mega cascade reservoirs using an evolutionary algorithm with successive approximation," Applied Energy, Elsevier, vol. 228(C), pages 1726-1739.
    6. Rashid, Muhammad Usman & Abid, Irfan & Latif, Abid, 2022. "Optimization of hydropower and related benefits through Cascade Reservoirs for sustainable economic growth," Renewable Energy, Elsevier, vol. 185(C), pages 241-254.
    7. dos Santos, Marco Aurélio & Damázio, Jorge Machado & Rogério, Josiclea Pereira & Amorim, Marcelo Andrade & Medeiros, Alexandre Mollica & Abreu, Juliano Lucas Souza & Maceira, Maria Elvira Pineiro & Me, 2017. "Estimates of GHG emissions by hydroelectric reservoirs: The Brazilian case," Energy, Elsevier, vol. 133(C), pages 99-107.
    8. Briones Hidrovo, Andrei & Uche, Javier & Martínez-Gracia, Amaya, 2017. "Accounting for GHG net reservoir emissions of hydropower in Ecuador," Renewable Energy, Elsevier, vol. 112(C), pages 209-221.
    9. He, Shaokun & Guo, Shenglian & Yin, Jiabo & Liao, Zhen & Li, He & Liu, Zhangjun, 2022. "A novel impoundment framework for a mega reservoir system in the upper Yangtze River basin," Applied Energy, Elsevier, vol. 305(C).
    10. Xuemin Wang & Jianzhong Zhou & Shuo Ouyang & Chunlong Li, 2014. "Research on Joint Impoundment Dispatching Model for Cascade Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5527-5542, December.
    11. Xie, Yuzuo & Guo, Shenglian & Zhong, Sirui & He, Zhipeng & Liu, Pan & Zhou, Yanlai, 2024. "Optimal allocation of flood prevention storage and dynamic operation of water levels to increase cascade reservoir hydropower generation," Renewable Energy, Elsevier, vol. 228(C).
    12. Vučijak, B. & Kupusović, T. & Midžić-Kurtagić, S. & Ćerić, A., 2013. "Applicability of multicriteria decision aid to sustainable hydropower," Applied Energy, Elsevier, vol. 101(C), pages 261-267.
    13. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    14. P. S. Keller & N. Catalán & D. Schiller & H.-P. Grossart & M. Koschorreck & B. Obrador & M. A. Frassl & N. Karakaya & N. Barros & J. A. Howitt & C. Mendoza-Lera & A. Pastor & G. Flaim & R. Aben & T. R, 2020. "Global CO2 emissions from dry inland waters share common drivers across ecosystems," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    15. Rafael M. Almeida & Qinru Shi & Jonathan M. Gomes-Selman & Xiaojian Wu & Yexiang Xue & Hector Angarita & Nathan Barros & Bruce R. Forsberg & Roosevelt García-Villacorta & Stephen K. Hamilton & John M., 2019. "Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    16. Suwal, Naresh & Huang, Xianfeng & Kuriqi, Alban & Chen, Yingqin & Pandey, Kamal Prasad & Bhattarai, Khem Prasad, 2020. "Optimisation of cascade reservoir operation considering environmental flows for different environmental management classes," Renewable Energy, Elsevier, vol. 158(C), pages 453-464.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Luo & Yuxuan Luo & Yanlai Zhou & Di Zhu & Fi-John Chang & Chong-Yu Xu, 2025. "Reducing Carbon Emissions: A Multi-Objective Approach to the Hydropower Operation of Mega Reservoirs," Sustainability, MDPI, vol. 17(6), pages 1-22, March.
    2. He, Shaokun & Li, BinBin & Li, Qianxun & Zheng, Hezhen & Chen, Yingjian, 2025. "Refining hydropower operation by dynamic control of cascade reservoir water levels with flood season segmentation," Energy, Elsevier, vol. 314(C).
    3. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo & Soares, Isabel, 2020. "Probabilistic multicriteria environmental assessment of power plants: A global approach," Applied Energy, Elsevier, vol. 260(C).
    4. Ge, Zewen & Geng, Yong & Wei, Wendong & Jiang, Mingkun & Chen, Bin & Li, Jiashuo, 2023. "Embodied carbon emissions induced by the construction of hydropower infrastructure in China," Energy Policy, Elsevier, vol. 173(C).
    5. He, Shaokun & Guo, Shenglian & Yin, Jiabo & Liao, Zhen & Li, He & Liu, Zhangjun, 2022. "A novel impoundment framework for a mega reservoir system in the upper Yangtze River basin," Applied Energy, Elsevier, vol. 305(C).
    6. Li, Mingxu & He, Nianpeng, 2022. "Carbon intensity of global existing and future hydropower reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Gemechu, Eskinder & Kumar, Amit, 2022. "A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Xie, Yuzuo & Guo, Shenglian & Zhong, Sirui & He, Zhipeng & Liu, Pan & Zhou, Yanlai, 2024. "Optimal allocation of flood prevention storage and dynamic operation of water levels to increase cascade reservoir hydropower generation," Renewable Energy, Elsevier, vol. 228(C).
    9. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    10. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    11. Sedighkia, Mahdi & Abdoli, Asghar, 2023. "An optimization approach for managing environmental impacts of generating hydropower on fish biodiversity," Renewable Energy, Elsevier, vol. 218(C).
    12. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    13. Rahim Zahedi & Reza Eskandarpanah & Mohammadhossein Akbari & Nima Rezaei & Paniz Mazloumin & Omid Noudeh Farahani, 2022. "Development of a New Simulation Model for the Reservoir Hydropower Generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2241-2256, May.
    14. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Fernandez Vazquez, Carlos A.A. & Vansighen, Thomas & Fernandez Fuentes, Miguel H. & Quoilin, Sylvain, 2024. "Energy transition implications for Bolivia. Long-term modelling with short-term assessment of future scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Bilir, Levent & Yildirim, Nurdan, 2018. "Modeling and performance analysis of a hybrid system for a residential application," Energy, Elsevier, vol. 163(C), pages 555-569.
    18. Lihua Chen & Jing Yu & Jin Teng & Hang Chen & Xiang Teng & Xuefang Li, 2022. "Optimizing Joint Flood Control Operating Charts for Multi–reservoir System Based on Multi–group Piecewise Linear Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3305-3325, July.
    19. Taitiya Kenneth Yuguda & Yi Li & Bobby Shekarau Luka & Goziya William Dzarma, 2020. "Incorporating Reservoir Greenhouse Gas Emissions into Carbon Footprint of Sugar Produced from Irrigated Sugarcane in Northeastern Nigeria," Sustainability, MDPI, vol. 12(24), pages 1-24, December.
    20. Jingbing Sun & Youmu Xie & Sheng Zhou & Jiali Dan, 2024. "RETRACTED ARTICLE: The role of solar energy in achieving net-zero emission and green growth: a global analysis," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-16, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.