IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v198y2025ics0301421524005007.html
   My bibliography  Save this article

Assessing the impact of the Perform, Achieve, and Trade scheme on energy efficiency in India's iron and steel sector

Author

Listed:
  • Chauhan, Anushka
  • Thangavel, Mohanasundari

Abstract

This paper assesses the performance of the iron and steel sector in the Perform, Achieve, and Trade (PAT) scheme's cycles I and II from firm-level data between 2004 and 2019. The two-way fixed effects difference-in-difference regression employed showed a decline of 1.7% in the energy intensity due to the scheme. To check for heterogeneity in the results, the quantile treatment estimator and centered regression showed that the PAT scheme was ineffective in firms with higher energy intensity than in firms with lower and medium energy intensity, implying structural and technical difficulties in reducing energy use. In the heterogeneity analysis, private Indian and private foreign firms performed better than government-owned firms. In the mechanism analysis, research and development intensity, repair intensity, exports, and efficiency in using net fixed assets have all contributed to meeting the targets of the PAT firms. Key policy recommendations include higher energy-saving targets, which should be set concerning energy consumption; a more decentralized approach should be taken in forming energy-saving targets for the firms considering heterogeneity in their characteristics; longer time may be given to materialize the effects of energy-efficient investments and adjust the factor inputs.

Suggested Citation

  • Chauhan, Anushka & Thangavel, Mohanasundari, 2025. "Assessing the impact of the Perform, Achieve, and Trade scheme on energy efficiency in India's iron and steel sector," Energy Policy, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:enepol:v:198:y:2025:i:c:s0301421524005007
    DOI: 10.1016/j.enpol.2024.114480
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524005007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth Gillingham & Karen Palmer, 2014. "Bridging the Energy Efficiency Gap: Policy Insights from Economic Theory and Empirical Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(1), pages 18-38, January.
    2. Kenneth Gillingham & Richard G. Newell & Karen Palmer, 2009. "Energy Efficiency Economics and Policy," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 597-620, September.
    3. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    4. Yang, Zhihao & Hong, Junjie, 2021. "Trade policy uncertainty and energy intensity: Evidence from Chinese industrial firms," Energy Economics, Elsevier, vol. 103(C).
    5. Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Sahoo, Biresh K. & Mahanty, Biswajit, 2017. "Rationality of energy efficiency improvement targets under the PAT scheme in India – A case of thermal power plants," Energy Economics, Elsevier, vol. 66(C), pages 279-289.
    6. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
    7. Chowdhury, Jahedul Islam & Hu, Yukun & Haltas, Ismail & Balta-Ozkan, Nazmiye & Matthew, George Jr. & Varga, Liz, 2018. "Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1153-1178.
    8. Pal, Kalyani & Mukhopadhyay, Jyoti Prasad & Bhagawan, Praveen, 2024. "Does cap-and-trade scheme impact energy efficiency and firm value? Empirical evidence from India," Energy Economics, Elsevier, vol. 134(C).
    9. Hochman, Gal & Timilsina, Govinda R., 2017. "Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis," Energy Economics, Elsevier, vol. 63(C), pages 22-30.
    10. Kaumudi Misra, 2019. "Impact of perform-achieve-trade policy on the energy intensity of cement and iron and steel industries in India," Working Papers 451, Institute for Social and Economic Change, Bangalore.
    11. Sergio P. Firpo & Nicole M. Fortin & Thomas Lemieux, 2018. "Decomposing Wage Distributions Using Recentered Influence Function Regressions," Econometrics, MDPI, vol. 6(2), pages 1-40, May.
    12. Bhandari, Divita & Shrimali, Gireesh, 2018. "The perform, achieve and trade scheme in India: An effectiveness analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1286-1295.
    13. Andersson, Fredrik N.G. & Karpestam, Peter, 2013. "CO2 emissions and economic activity: Short- and long-run economic determinants of scale, energy intensity and carbon intensity," Energy Policy, Elsevier, vol. 61(C), pages 1285-1294.
    14. Hunt Allcott & Michael Greenstone, 2012. "Is There an Energy Efficiency Gap?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 3-28, Winter.
    15. Joerg Luedicke, 2022. "Difference-in-differences estimation using Stata," German Stata Users' Group Meetings 2022 06, Stata Users Group.
    16. Fernando Rios-Avila, 2020. "Recentered influence functions (RIFs) in Stata: RIF regression and RIF decomposition," Stata Journal, StataCorp LLC, vol. 20(1), pages 51-94, March.
    17. Zhang, Dayong & Li, Jun & Ji, Qiang, 2020. "Does better access to credit help reduce energy intensity in China? Evidence from manufacturing firms," Energy Policy, Elsevier, vol. 145(C).
    18. Riveros-Gavilanes, J. M., 2023. "A simple test of parallel pre-trends for Differences-in-Differences," MPRA Paper 119367, University Library of Munich, Germany, revised 2023.
    19. Gillingham, Kenneth & Palmer, Karen, 2013. "Bridging the Energy Efficiency Gap: Insights for Policy from Economic Theory and Empirical Analysis," RFF Working Paper Series dp-13-02, Resources for the Future.
    20. Saygin, D. & Patel, M.K. & Worrell, E. & Tam, C. & Gielen, D.J., 2011. "Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector," Energy, Elsevier, vol. 36(9), pages 5779-5790.
    21. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    22. Jonathan Roth, 2022. "Pretest with Caution: Event-Study Estimates after Testing for Parallel Trends," American Economic Review: Insights, American Economic Association, vol. 4(3), pages 305-322, September.
    23. Anukriti Sharma & Hiranmoy Roy & Narendra Nath Dalei, 2019. "Estimation Of Energy Intensity In Indian Iron And Steel Sector: A Panel Data Analysis," Statistics in Transition New Series, Polish Statistical Association, vol. 20(2), pages 107-121, June.
    24. Ian Bailey, 2010. "The EU emissions trading scheme," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 1(1), pages 144-153, January.
    25. Oak, Hena & Bansal, Sangeeta, 2022. "Enhancing energy efficiency of Indian industries: Effectiveness of PAT scheme," Energy Economics, Elsevier, vol. 113(C).
    26. Zhou, Nan & Levine, Mark D. & Price, Lynn, 2010. "Overview of current energy-efficiency policies in China," Energy Policy, Elsevier, vol. 38(11), pages 6439-6452, November.
    27. Louis-Gaëtan Giraudet & Antoine Missemer, 2023. "The History of Energy Efficiency in Economics: Breakpoints and Regularities," Post-Print halshs-02301636, HAL.
    28. Balachandra, P. & Ravindranath, Darshini & Ravindranath, N.H., 2010. "Energy efficiency in India: Assessing the policy regimes and their impacts," Energy Policy, Elsevier, vol. 38(11), pages 6428-6438, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giri, Prashant & Sharma, Tarun, 2024. "Market instrument for the first fuel and its role in decarbonizing Indian industrial production," Energy Policy, Elsevier, vol. 190(C).
    2. Zha, Donglan & Yang, Guanglei & Wang, Wenzhong & Wang, Qunwei & Zhou, Dequn, 2020. "Appliance energy labels and consumer heterogeneity: A latent class approach based on a discrete choice experiment in China," Energy Economics, Elsevier, vol. 90(C).
    3. Löschel, Andreas & Lutz, Benjamin Johannes & Massier, Philipp, 2017. "Credit constraints, energy management practices, and investments in energy saving technologies: German manufacturing in close-up," ZEW Discussion Papers 17-072, ZEW - Leibniz Centre for European Economic Research.
    4. Dumortier, Jerome & Siddiki, Saba & Carley, Sanya & Cisney, Joshua & Krause, Rachel M. & Lane, Bradley W. & Rupp, John A. & Graham, John D., 2015. "Effects of providing total cost of ownership information on consumers’ intent to purchase a hybrid or plug-in electric vehicle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 72(C), pages 71-86.
    5. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.
    6. Henningsen, Geraldine & Wiese, Catharina, 2019. "Do Household Characteristics Really Matter? A Meta-Analysis on the Determinants of Households’ Energy-Efficiency Investments," MPRA Paper 101701, University Library of Munich, Germany.
    7. McConnell, Virginia, 2013. "The New CAFE Standards: Are They Enough on Their Own?," RFF Working Paper Series dp-13-14, Resources for the Future.
    8. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    9. Heutel, Garth, 2019. "Prospect theory and energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 236-254.
    10. Matilde Giaccherini & David H. Herberich & David Jimenez-Gomez & John A. List & Giovanni Ponti & Michael K. Price, 2019. "The Behavioralist Goes Door-To-Door: Understanding Household Technological Diffusion Using a Theory-Driven Natural Field Experiment," NBER Working Papers 26173, National Bureau of Economic Research, Inc.
    11. Boyd, Gale A. & Curtis, E. Mark, 2014. "Evidence of an “Energy-Management Gap” in U.S. manufacturing: Spillovers from firm management practices to energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 68(3), pages 463-479.
    12. Stefan Lamp, 2023. "Sunspots That Matter: The Effect of Weather on Solar Technology Adoption," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 1179-1219, April.
    13. Zhu, Junming & Chertow, Marian R., 2017. "Business Strategy Under Institutional Constraints: Evidence From China's Energy Efficiency Regulations," Ecological Economics, Elsevier, vol. 135(C), pages 10-21.
    14. Jorge Cunha & Manuel Lopes Nunes & Fátima Lima, 2018. "Discerning the factors explaining the change in energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 163-179, December.
    15. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    16. David Bradford & Charles Courtemanche & Garth Heutel & Patrick McAlvanah & Christopher Ruhm, 2017. "Time preferences and consumer behavior," Journal of Risk and Uncertainty, Springer, vol. 55(2), pages 119-145, December.
    17. Brucal, Arlan & Roberts, Michael J., 2019. "Do energy efficiency standards hurt consumers? Evidence from household appliance sales," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 88-107.
    18. Sahari, Anna, 2019. "Electricity prices and consumers’ long-term technology choices: Evidence from heating investments," European Economic Review, Elsevier, vol. 114(C), pages 19-53.
    19. Dumortier, Jerome & Siddiki, Saba & Carley, Sanya & Cisney, Joshua & Krause, Rachel & Lane, Bradley & Rupp, John & Graham, John, 2015. "Effects of Life Cycle Cost Information Disclosure on the Purchase Decision of Hybrid and Plug-In Vehicles," IU SPEA AgEcon Papers 198643, Indiana University, IU School of Public and Environmental Affairs.
    20. Louis-Gaëtan Giraudet & S. Houde, 2013. "Double moral hazard and the energy efficiency gap," Post-Print hal-00799725, HAL.

    More about this item

    Keywords

    Energy intensity; Energy conservation; Iron and steel; Perform; Achieve; Trade scheme; Energy efficiency;
    All these keywords.

    JEL classification:

    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:198:y:2025:i:c:s0301421524005007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.