IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6665-d573320.html
   My bibliography  Save this article

A Quantitative Investigation on Awareness of Renewable Energy Building Technology in the United Arab Emirates

Author

Listed:
  • Mohammed Albattah

    (Department of Architectural Engineering, United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates)

  • Daniel Efurosibina Attoye

    (Department of Architectural Engineering, United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates)

Abstract

Sustainability in architecture engages a wide range of considerations in the light of the significant negative impact of buildings on the environment. One aspect of research in this parlance engages the technological and the social dimensions of building innovation, which promote the use of renewable technology as a mitigation strategy. The challenge, however, is that the end-users or building clients do not always have sufficient awareness and information regarding these technologies to guide their decision to accept it. Consequently, the diffusion of said innovations is slow, and the environmental or building problems they were invented to solve persist at the expense of both humanity and the environment. This study, therefore, focuses on a quantitative investigation to ascertain the level of awareness and interest of residents in the United Arab Emirates (UAE) on Building Integrated Photovoltaics (BIPV) as an example of renewable energy-based building technology. In this study, 289 residents participated, following the distribution of a questionnaire to demographically distinct individuals. This distinction was used in the analysis to highlight different groups such as, gender, generations, and occupational background of the respondents. The findings of the study show, firstly, that there is a high level of awareness of BIPV in the sample. The study also shows that comparing awareness with each of these demographic variables produced a second layer of findings. For example, the statistical analysis showed that there is no significant difference between the level of awareness and any of the demographic characteristics of the study participants. However, there is a significant statistical difference ( p = 0.000) between awareness and interest in BIPV. In concluding this study, recommendations for further research that elaborates other statistical variables and tests, as well as a follow-up qualitative investigation are planned and outlined for future studies. The findings of this investigation may be of benefit to researchers, policy makers, as well as energy companies and marketing agencies within and outside the region.

Suggested Citation

  • Mohammed Albattah & Daniel Efurosibina Attoye, 2021. "A Quantitative Investigation on Awareness of Renewable Energy Building Technology in the United Arab Emirates," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6665-:d:573320
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6665/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6665/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kosorić, Vesna & Lau, Siu-Kit & Tablada, Abel & Lau, Stephen Siu-Yu, 2018. "General model of Photovoltaic (PV) integration into existing public high-rise residential buildings in Singapore – Challenges and benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 70-89.
    2. Reiche, Danyel, 2010. "Energy Policies of Gulf Cooperation Council (GCC) countries--possibilities and limitations of ecological modernization in rentier states," Energy Policy, Elsevier, vol. 38(5), pages 2395-2403, May.
    3. Karjalainen, Sami & Ahvenniemi, Hannele, 2019. "Pleasure is the profit - The adoption of solar PV systems by households in Finland," Renewable Energy, Elsevier, vol. 133(C), pages 44-52.
    4. Bashiri, Ali & Alizadeh, Sasan H., 2018. "The analysis of demographics, environmental and knowledge factors affecting prospective residential PV system adoption: A study in Tehran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3131-3139.
    5. Siu-Kit Lau & Vesna Kosorić & Monika Bieri & André.M. Nobre, 2021. "Identification of Factors Influencing Development of Photovoltaic (PV) Implementation in Singapore," Sustainability, MDPI, vol. 13(5), pages 1-30, March.
    6. Oliver Morton, 2006. "A new day dawning?: Silicon Valley sunrise," Nature, Nature, vol. 443(7107), pages 19-22, September.
    7. De Groote, Olivier & Pepermans, Guido & Verboven, Frank, 2016. "Heterogeneity in the adoption of photovoltaic systems in Flanders," Energy Economics, Elsevier, vol. 59(C), pages 45-57.
    8. Ahmad Hasan & Sarah Josephine McCormack & Ming Jun Huang & Brian Norton, 2014. "Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM) System through Temperature Regulation and Performance Enhancement of Photovoltaics," Energies, MDPI, vol. 7(3), pages 1-14, March.
    9. Curtius, Hans Christoph & Hille, Stefanie Lena & Berger, Christian & Hahnel, Ulf Joachim Jonas & Wüstenhagen, Rolf, 2018. "Shotgun or snowball approach? Accelerating the diffusion of rooftop solar photovoltaics through peer effects and social norms," Energy Policy, Elsevier, vol. 118(C), pages 596-602.
    10. Petrovich, Beatrice & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2019. "Beauty and the budget: A segmentation of residential solar adopters," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    11. Strazzera, Elisabetta & Statzu, Vania, 2017. "Fostering photovoltaic technologies in Mediterranean cities: Consumers’ demand and social acceptance," Renewable Energy, Elsevier, vol. 102(PB), pages 361-371.
    12. Curtius, Hans Christoph, 2018. "The adoption of building-integrated photovoltaics: barriers and facilitators," Renewable Energy, Elsevier, vol. 126(C), pages 783-790.
    13. Lu, Yujie & Chang, Ruidong & Shabunko, Veronika & Lay Yee, Amy Tan, 2019. "The implementation of building-integrated photovoltaics in Singapore: drivers versus barriers," Energy, Elsevier, vol. 168(C), pages 400-408.
    14. Friess, Wilhelm A. & Rakhshan, Kambiz, 2017. "A review of passive envelope measures for improved building energy efficiency in the UAE," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 485-496.
    15. Vesna Kosorić & Siu-Kit Lau & Abel Tablada & Monika Bieri & André M. Nobre, 2021. "A Holistic Strategy for Successful Photovoltaic (PV) Implementation into Singapore’s Built Environment," Sustainability, MDPI, vol. 13(11), pages 1-35, June.
    16. Chang, Ruidong & Cao, Yuan & Lu, Yujie & Shabunko, Veronika, 2019. "Should BIPV technologies be empowered by innovation policy mix to facilitate energy transitions? - Revealing stakeholders' different perspectives using Q methodology," Energy Policy, Elsevier, vol. 129(C), pages 307-318.
    17. Sharples, Steve & Radhi, Hassan, 2013. "Assessing the technical and economic performance of building integrated photovoltaics and their value to the GCC society," Renewable Energy, Elsevier, vol. 55(C), pages 150-159.
    18. David Wogan & Shreekar Pradhan & Shahad Albardi, 2017. "GCC Energy System Overview – 2017," Methodology Papers ks--2017-mp04.a, King Abdullah Petroleum Studies and Research Center.
    19. Timilsina, Govinda R. & Kurdgelashvili, Lado & Narbel, Patrick A., 2011. "A review of solar energy : markets, economics and policies," Policy Research Working Paper Series 5845, The World Bank.
    20. Dehwah, Ammar H.A. & Asif, Muhammad, 2019. "Assessment of net energy contribution to buildings by rooftop photovoltaic systems in hot-humid climates," Renewable Energy, Elsevier, vol. 131(C), pages 1288-1299.
    21. Daniel Efurosibina Attoye & Timothy O. Adekunle & Kheira Anissa Tabet Aoul & Ahmed Hassan & Samuel Osekafore Attoye, 2018. "A Conceptual Framework for a Building Integrated Photovoltaics (BIPV) Educative-Communication Approach," Sustainability, MDPI, vol. 10(10), pages 1-21, October.
    22. Krarti, Moncef & Dubey, Kankana & Howarth, Nicholas, 2019. "Energy productivity analysis framework for buildings: a case study of GCC region," Energy, Elsevier, vol. 167(C), pages 1251-1265.
    23. Daniel Efurosibina Attoye & Kheira Anissa Tabet Aoul & Ahmed Hassan, 2017. "A Review on Building Integrated Photovoltaic Façade Customization Potentials," Sustainability, MDPI, vol. 9(12), pages 1-24, December.
    24. Bondio, Steven & Shahnazari, Mahdi & McHugh, Adam, 2018. "The technology of the middle class: Understanding the fulfilment of adoption intentions in Queensland's rapid uptake residential solar photovoltaics market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 642-651.
    25. Asif, M., 2016. "Growth and sustainability trends in the buildings sector in the GCC region with particular reference to the KSA and UAE," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1267-1273.
    26. Joud Al Dakheel & Kheira Tabet Aoul, 2017. "Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review," Energies, MDPI, vol. 10(10), pages 1-32, October.
    27. Bao, Qifang & Honda, Tomonori & El Ferik, Sami & Shaukat, Mian Mobeen & Yang, Maria C., 2017. "Understanding the role of visual appeal in consumer preference for residential solar panels," Renewable Energy, Elsevier, vol. 113(C), pages 1569-1579.
    28. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaima A. Alnaqbi & Abdul Hai Alami, 2023. "Sustainability and Renewable Energy in the UAE: A Case Study of Sharjah," Energies, MDPI, vol. 16(20), pages 1-30, October.
    2. Li Yang & Sumaiya Bashiru Danwana & Issahaku Fadilul-lah Yassaanah, 2021. "An Empirical Study of Renewable Energy Technology Acceptance in Ghana Using an Extended Technology Acceptance Model," Sustainability, MDPI, vol. 13(19), pages 1-19, September.
    3. Marzouk, Mai A. & Salheen, Mohamed A. & Fischer, Leonie K., 2024. "Towards sustainable urbanization in new cities: Social acceptance and preferences of agricultural and solar energy systems," Technology in Society, Elsevier, vol. 77(C).
    4. Hamed M. Hussain & Khalil Rahi & Mohammednoor Al Tarawneh & Christopher Preece, 2022. "Developing Applicable Scenarios to Install and Utilize Solar Panels in the Houses of Abu Dhabi City," Sustainability, MDPI, vol. 14(22), pages 1-33, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vesna Kosorić & Siu-Kit Lau & Abel Tablada & Monika Bieri & André M. Nobre, 2021. "A Holistic Strategy for Successful Photovoltaic (PV) Implementation into Singapore’s Built Environment," Sustainability, MDPI, vol. 13(11), pages 1-35, June.
    2. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    3. Siu-Kit Lau & Vesna Kosorić & Monika Bieri & André.M. Nobre, 2021. "Identification of Factors Influencing Development of Photovoltaic (PV) Implementation in Singapore," Sustainability, MDPI, vol. 13(5), pages 1-30, March.
    4. Emily Schulte & Fabian Scheller & Daniel Sloot & Thomas Bruckner, 2021. "A meta-analysis of residential PV adoption: the important role of perceived benefits, intentions and antecedents in solar energy acceptance," Papers 2112.12464, arXiv.org.
    5. Daniel Efurosibina Attoye & Timothy O. Adekunle & Kheira Anissa Tabet Aoul & Ahmed Hassan & Samuel Osekafore Attoye, 2018. "A Conceptual Framework for a Building Integrated Photovoltaics (BIPV) Educative-Communication Approach," Sustainability, MDPI, vol. 10(10), pages 1-21, October.
    6. Best, Rohan & Chareunsy, Andrea, 2022. "The impact of income on household solar panel uptake: Exploring diverse results using Australian data," Energy Economics, Elsevier, vol. 112(C).
    7. Tianyi Chen & Yaning An & Chye Kiang Heng, 2022. "A Review of Building-Integrated Photovoltaics in Singapore: Status, Barriers, and Prospects," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    8. Zander, Kerstin K., 2020. "Unrealised opportunities for residential solar panels in Australia," Energy Policy, Elsevier, vol. 142(C).
    9. Best, Rohan & Trück, Stefan, 2020. "Capital and policy impacts on Australian small-scale solar installations," Energy Policy, Elsevier, vol. 136(C).
    10. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    11. Petrovich, Beatrice & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2019. "Beauty and the budget: A segmentation of residential solar adopters," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    12. Núria Sánchez-Pantoja & Rosario Vidal & M. Carmen Pastor, 2021. "EU-Funded Projects with Actual Implementation of Renewable Energies in Cities. Analysis of Their Concern for Aesthetic Impact," Energies, MDPI, vol. 14(6), pages 1-24, March.
    13. Ding, Liping & Zhu, Yuxuan & Zheng, Longwei & Dai, Qiyao & Zhang, Zumeng, 2023. "What is the path of photovoltaic building (BIPV or BAPV) promotion? --The perspective of evolutionary games," Applied Energy, Elsevier, vol. 340(C).
    14. Nepal, Rabindra & Best, Rohan & Taylor, Madeline, 2023. "Strategies for reducing ethnic inequality in energy outcomes: A Nepalese example," Energy Economics, Elsevier, vol. 126(C).
    15. Best, Rohan & Chareunsy, Andrea & Taylor, Madeline, 2023. "Changes in inequality for solar panel uptake by Australian homeowners," Ecological Economics, Elsevier, vol. 209(C).
    16. Esplin, Ryan & Nelson, Tim, 2022. "Redirecting solar feed in tariffs to residential battery storage: Would it be worth it?," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 373-389.
    17. Romeo Danielis & Mariangela Scorrano & Alessandro Massi Pavan & Nicola Blasuttigh, 2023. "Simulating the Diffusion of Residential Rooftop Photovoltaic, Battery Storage Systems and Electric Cars in Italy. An Exploratory Study Combining a Discrete Choice and Agent-Based Modelling Approach," Energies, MDPI, vol. 16(1), pages 1-20, January.
    18. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    19. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    20. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6665-:d:573320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.