IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p557-d1024064.html
   My bibliography  Save this article

Simulating the Diffusion of Residential Rooftop Photovoltaic, Battery Storage Systems and Electric Cars in Italy. An Exploratory Study Combining a Discrete Choice and Agent-Based Modelling Approach

Author

Listed:
  • Romeo Danielis

    (Department of Economics, Business, Mathematics and Statistics, University of Trieste, 34127 Trieste, Italy
    Centro Interdipartimentale per l’Energia, l’Ambiente e i Trasporti “Giacomo Ciamician”, University of Trieste, 34127 Trieste, Italy)

  • Mariangela Scorrano

    (Department of Economics, Business, Mathematics and Statistics, University of Trieste, 34127 Trieste, Italy
    Centro Interdipartimentale per l’Energia, l’Ambiente e i Trasporti “Giacomo Ciamician”, University of Trieste, 34127 Trieste, Italy)

  • Alessandro Massi Pavan

    (Centro Interdipartimentale per l’Energia, l’Ambiente e i Trasporti “Giacomo Ciamician”, University of Trieste, 34127 Trieste, Italy
    Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

  • Nicola Blasuttigh

    (Centro Interdipartimentale per l’Energia, l’Ambiente e i Trasporti “Giacomo Ciamician”, University of Trieste, 34127 Trieste, Italy
    Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

Abstract

Rooftop solar photovoltaic (PV) systems could significantly contribute to renewable energy production and reduce domestic energy costs. In Italy, as in other countries, the current incentives generate a modest annual increase after the generous fiscal incentives that kick-started the PV market in the 2008–2013 period. Several factors are, however, at play that can speed up the installation process, such as the improvements in PV technology at declining prices, the increased availability of battery-storage (BS) systems, the growing use of electric appliances, the uptake of electric cars, and the increased environmental awareness. We integrate two research methodologies, discrete choice modeling and agent-based modeling, to understand how these factors will influence households’ decisions regarding PV and BS installations and how agents interact in their socioeconomic environment. We predict that in Italy, given the preference structure of homeowners, the continuing decline in costs, and the social interaction, 40–45% of homeowners will have PV or PV and BS installed by 2030, thanks to the existing investment tax credit policy.

Suggested Citation

  • Romeo Danielis & Mariangela Scorrano & Alessandro Massi Pavan & Nicola Blasuttigh, 2023. "Simulating the Diffusion of Residential Rooftop Photovoltaic, Battery Storage Systems and Electric Cars in Italy. An Exploratory Study Combining a Discrete Choice and Agent-Based Modelling Approach," Energies, MDPI, vol. 16(1), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:557-:d:1024064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/557/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/557/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scorrano, Mariangela & Rotaris, Lucia, 2022. "The role of environmental awareness and knowledge in the choice of a seated electric scooter," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 333-347.
    2. Crago, Christine Lasco & Chernyakhovskiy, Ilya, 2017. "Are policy incentives for solar power effective? Evidence from residential installations in the Northeast," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 132-151.
    3. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    4. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    5. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The post COVID-19 green recovery in practice: Assessing the profitability of a policy proposal on residential photovoltaic plants," Energy Policy, Elsevier, vol. 147(C).
    6. Danielis, Romeo & Rotaris, Lucia & Giansoldati, Marco & Scorrano, Mariangela, 2020. "Drivers’ preferences for electric cars in Italy. Evidence from a country with limited but growing electric car uptake," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 79-94.
    7. Rotaris, Lucia & Giansoldati, Marco & Scorrano, Mariangela, 2021. "The slow uptake of electric cars in Italy and Slovenia. Evidence from a stated-preference survey and the role of knowledge and environmental awareness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 1-18.
    8. Priessner, Alfons & Hampl, Nina, 2020. "Can product bundling increase the joint adoption of electric vehicles, solar panels and battery storage? Explorative evidence from a choice-based conjoint study in Austria," Ecological Economics, Elsevier, vol. 167(C).
    9. Giorgio Fagiolo & Paul Windrum & Alessio Moneta, 2006. "Empirical Validation of Agent Based Models: A Critical Survey," LEM Papers Series 2006/14, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    10. Ramshani, Mohammad & Li, Xueping & Khojandi, Anahita & Omitaomu, Olufemi, 2020. "An agent-based approach to study the diffusion rate and the effect of policies on joint placement of photovoltaic panels and green roof under climate change uncertainty," Applied Energy, Elsevier, vol. 261(C).
    11. Ford, Rebecca & Walton, Sara & Stephenson, Janet & Rees, David & Scott, Michelle & King, Geoff & Williams, John & Wooliscroft, Ben, 2017. "Emerging energy transitions: PV uptake beyond subsidies," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 138-150.
    12. Bondio, Steven & Shahnazari, Mahdi & McHugh, Adam, 2018. "The technology of the middle class: Understanding the fulfilment of adoption intentions in Queensland's rapid uptake residential solar photovoltaics market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 642-651.
    13. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.
    14. Gu, Gaofeng & Feng, Tao, 2020. "Heterogeneous choice of home renewable energy equipment conditioning on the choice of electric vehicles," Renewable Energy, Elsevier, vol. 154(C), pages 394-403.
    15. Palm, Jenny, 2018. "Household installation of solar panels – Motives and barriers in a 10-year perspective," Energy Policy, Elsevier, vol. 113(C), pages 1-8.
    16. David A. Hensher, 2006. "How do respondents process stated choice experiments? Attribute consideration under varying information load," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 861-878, September.
    17. Hye-Jeong Lee & Sung-Yoon Huh & Seung-Hoon Yoo, 2018. "Social Preferences for Small-Scale Solar Photovoltaic Power Plants in South Korea: A Choice Experiment Study," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    18. Petrovich, Beatrice & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2019. "Beauty and the budget: A segmentation of residential solar adopters," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    19. Strazzera, Elisabetta & Statzu, Vania, 2017. "Fostering photovoltaic technologies in Mediterranean cities: Consumers’ demand and social acceptance," Renewable Energy, Elsevier, vol. 102(PB), pages 361-371.
    20. Bhat, Chandra R. & Castelar, Saul, 2002. "A unified mixed logit framework for modeling revealed and stated preferences: formulation and application to congestion pricing analysis in the San Francisco Bay area," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 593-616, August.
    21. Mariangela Scorrano & Romeo Danielis & Stefano Pastore & Vanni Lughi & Alessandro Massi Pavan, 2020. "Modeling the Total Cost of Ownership of an Electric Car Using a Residential Photovoltaic Generator and a Battery Storage Unit—An Italian Case Study," Energies, MDPI, vol. 13(10), pages 1-21, May.
    22. David A. Hensher, 2006. "How do respondents process stated choice experiments? Attribute consideration under varying information load," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 861-878.
    23. Hess, Stephane & Palma, David, 2019. "Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    24. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M., 2015. "Regional distribution of photovoltaic deployment in the UK and its determinants: A spatial econometric approach," Energy Economics, Elsevier, vol. 51(C), pages 417-429.
    25. Braito, Michael & Flint, Courtney & Muhar, Andreas & Penker, Marianne & Vogel, Stefan, 2017. "Individual and collective socio-psychological patterns of photovoltaic investment under diverging policy regimes of Austria and Italy," Energy Policy, Elsevier, vol. 109(C), pages 141-153.
    26. Edoardo Marcucci & Amanda Stathopoulos & Lucia Rotaris & Romeo Danielis, 2011. "Comparing Single and Joint Preferences: A Choice Experiment on Residential Location in Three-Member Households," Environment and Planning A, , vol. 43(5), pages 1209-1225, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Emily Schulte & Fabian Scheller & Daniel Sloot & Thomas Bruckner, 2021. "A meta-analysis of residential PV adoption: the important role of perceived benefits, intentions and antecedents in solar energy acceptance," Papers 2112.12464, arXiv.org.
    3. Zander, Kerstin K., 2020. "Unrealised opportunities for residential solar panels in Australia," Energy Policy, Elsevier, vol. 142(C).
    4. Palm, A., 2020. "Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Best, Rohan & Trück, Stefan, 2020. "Capital and policy impacts on Australian small-scale solar installations," Energy Policy, Elsevier, vol. 136(C).
    6. Rotaris, Lucia & Giansoldati, Marco & Scorrano, Mariangela, 2021. "The slow uptake of electric cars in Italy and Slovenia. Evidence from a stated-preference survey and the role of knowledge and environmental awareness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 1-18.
    7. Mihailova, Darja & Schubert, Iljana & Martinez-Cruz, Adan L. & Hearn, Adam X. & Sohre, Annika, 2022. "Preferences for configurations of Positive Energy Districts – Insights from a discrete choice experiment on Swiss households," Energy Policy, Elsevier, vol. 163(C).
    8. Jia, Wenjian & Jiang, Zhiqiu & Wang, Qian & Xu, Bin & Xiao, Mei, 2023. "Preferences for zero-emission vehicle attributes: Comparing early adopters with mainstream consumers in California," Transport Policy, Elsevier, vol. 135(C), pages 21-32.
    9. Best, Rohan & Burke, Paul J. & Nishitateno, Shuhei, 2019. "Evaluating the effectiveness of Australia's Small-scale Renewable Energy Scheme for rooftop solar," Energy Economics, Elsevier, vol. 84(C).
    10. Nurwidiana Nurwidiana & Bertha Maya Sopha & Adhika Widyaparaga, 2022. "Simulating Socio-Technical Transitions of Photovoltaics Using Empirically Based Hybrid Simulation-Optimization Approach," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
    11. Yamashiro, Ririka & Mori, Akihisa, 2023. "Combined third-party ownership and aggregation business model for the adoption of rooftop solar PV–battery systems: Implications from the case of Miyakojima Island, Japan," Energy Policy, Elsevier, vol. 173(C).
    12. Dalia Štreimikienė & Vidas Lekavičius & Gintare Stankūnienė & Aušra Pažėraitė, 2022. "Renewable Energy Acceptance by Households: Evidence from Lithuania," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    13. Jacksohn, Anke & Grösche, Peter & Rehdanz, Katrin & Schröder, Carsten, 2019. "Drivers of renewable technology adoption in the household sector," Energy Economics, Elsevier, vol. 81(C), pages 216-226.
    14. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2023. "Neighbourhood-level spatial determinants of residential solar photovoltaic adoption in the Netherlands," Renewable Energy, Elsevier, vol. 206(C), pages 1239-1248.
    15. Mohammed Albattah & Daniel Efurosibina Attoye, 2021. "A Quantitative Investigation on Awareness of Renewable Energy Building Technology in the United Arab Emirates," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    16. Kemperman, Astrid, 2021. "A review of research into discrete choice experiments in tourism: Launching the Annals of Tourism Research Curated Collection on Discrete Choice Experiments in Tourism," Annals of Tourism Research, Elsevier, vol. 87(C).
    17. Scorrano, Mariangela & Rotaris, Lucia, 2022. "The role of environmental awareness and knowledge in the choice of a seated electric scooter," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 333-347.
    18. Jan Paul Baginski & Christoph Weber, "undated". "Coherent estimations for residential photovoltaic uptake in Germany including spatial spillover effects," EWL Working Papers 1902, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    19. Collier, Samuel H.C. & House, Jo I. & Connor, Peter M. & Harris, Richard, 2023. "Distributed local energy: Assessing the determinants of domestic-scale solar photovoltaic uptake at the local level across England and Wales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    20. Spyridon Karytsas & Ioannis Vardopoulos & Eleni Theodoropoulou, 2019. "Factors Affecting Sustainable Market Acceptance of Residential Microgeneration Technologies. A Two Time Period Comparative Analysis," Energies, MDPI, vol. 12(17), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:557-:d:1024064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.