IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225001665.html
   My bibliography  Save this article

Factors on regional installations of residential photovoltaics in China

Author

Listed:
  • Qiu, Shoufeng
  • Wu, Xiangyou
  • Lin, Boqiang
  • Lin, Ping

Abstract

Residential photovoltaics (PVs) are a key lever of China's energy transition strategy to safeguard energy supplies, reduce environmental pollution and curtail CO2 emissions. With the objective to understand the explanatory power of the extended definition of compatibility in the diffusion of innovation theory and the influence of the rural population on regional adoption of residential PVs, this study investigates the relationship between residential photovoltaic (PV) installations in cities at the prefecture level, and rural population and other prevalent explanatory variables, using spatial econometric models to a recently available dataset in China. The results indicate a statistically significant positive relationship between rural population and regional installations of residential PVs, validating that the extended definition of compatibility can still contribute to the explanation of innovation diffusion. Moreover, there is a statistically significant positive relationship between GDP per capita, electricity price, and solar irradiation, and regional installations of residential PVs, with significant spillover effects across cities. Our study contributes to the expansion of the definition of compatibility and improves the insight into the determinants on regional diffusion of residential PVs. This is helpful in orienting economic and developing policies related to residential PV deployment in China and other developing countries.

Suggested Citation

  • Qiu, Shoufeng & Wu, Xiangyou & Lin, Boqiang & Lin, Ping, 2025. "Factors on regional installations of residential photovoltaics in China," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001665
    DOI: 10.1016/j.energy.2025.134524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225001665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takanobu Kosugi & Yoshiyuki Shimoda & Takayuki Tashiro, 2019. "Neighborhood influences on the diffusion of residential photovoltaic systems in Kyoto City, Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 477-505, October.
    2. Marcello Graziano & Kenneth Gillingham, 2015. "Spatial patterns of solar photovoltaic system adoption: The influence of neighbors and the built environment," Journal of Economic Geography, Oxford University Press, vol. 15(4), pages 815-839.
    3. Oleg Kucher & Donald Lacombe & Sean T. Davidson, 2021. "The Residential Solar PV in the Mid-Atlantic: A Spatial Panel Approach," International Regional Science Review, , vol. 44(2), pages 262-288, March.
    4. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2023. "Neighbourhood-level spatial determinants of residential solar photovoltaic adoption in the Netherlands," Renewable Energy, Elsevier, vol. 206(C), pages 1239-1248.
    5. Zhang, Yu & Song, Junghyun & Hamori, Shigeyuki, 2011. "Impact of subsidy policies on diffusion of photovoltaic power generation," Energy Policy, Elsevier, vol. 39(4), pages 1958-1964, April.
    6. Kwan, Calvin Lee, 2012. "Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States," Energy Policy, Elsevier, vol. 47(C), pages 332-344.
    7. Irwin, Nicholas B., 2021. "Sunny days: Spatial spillovers in photovoltaic system adoptions," Energy Policy, Elsevier, vol. 151(C).
    8. Irfan, Mohd & Yadav, Sarvendra & Shaw, Krishnendu, 2021. "The adoption of solar photovoltaic technology among Indian households: Examining the influence of entrepreneurship," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    9. Best, Rohan & Burke, Paul J. & Nishitateno, Shuhei, 2019. "Understanding the determinants of rooftop solar installation: evidence from household surveys in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), July.
    10. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    11. Pronti, A. & Zoboli, R., 2024. "Something new under the sun. A spatial econometric analysis of the adoption of photovoltaic systems in Italy," Energy Economics, Elsevier, vol. 134(C).
    12. Thormeyer, Christoph & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2020. "Spatially-explicit models should consider real-world diffusion of renewable electricity: Solar PV example in Switzerland," Renewable Energy, Elsevier, vol. 145(C), pages 363-374.
    13. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M. & Truckell, Ian & Hart, Phil, 2021. "Energy transition at local level: Analyzing the role of peer effects and socio-economic factors on UK solar photovoltaic deployment," Energy Policy, Elsevier, vol. 148(PB).
    14. Wu, Haixia & Ge, Yan & Li, Jianping, 2023. "Uncertainty, time preference and households’ adoption of rooftop photovoltaic technology," Energy, Elsevier, vol. 276(C).
    15. Jayaweera, Nadeeka & Jayasinghe, Chathuri L. & Weerasinghe, Sandaru N., 2018. "Local factors affecting the spatial diffusion of residential photovoltaic adoption in Sri Lanka," Energy Policy, Elsevier, vol. 119(C), pages 59-67.
    16. Bondio, Steven & Shahnazari, Mahdi & McHugh, Adam, 2018. "The technology of the middle class: Understanding the fulfilment of adoption intentions in Queensland's rapid uptake residential solar photovoltaics market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 642-651.
    17. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    18. Moon-Hyun Kim & Tae-Hyoung Tommy Gim, 2021. "Spatial Characteristics of the Diffusion of Residential Solar Photovoltaics in Urban Areas: A Case of Seoul, South Korea," IJERPH, MDPI, vol. 18(2), pages 1-16, January.
    19. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    20. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    21. Sommerfeld, Jeff & Buys, Laurie & Mengersen, Kerrie & Vine, Desley, 2017. "Influence of demographic variables on uptake of domestic solar photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 315-323.
    22. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    23. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    24. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M., 2015. "Regional distribution of photovoltaic deployment in the UK and its determinants: A spatial econometric approach," Energy Economics, Elsevier, vol. 51(C), pages 417-429.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziquan Wang & Yaping Gao & Yan Gao, 2025. "Optimization of Distributed Photovoltaic Energy Storage System Double-Layer Planning in Low-Carbon Parks Considering Variable Operating Conditions and Complementary Synergy of Energy Storage Devices," Energies, MDPI, vol. 18(8), pages 1-35, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. San-Martín, Enrique & Elizalde, Patxi, 2024. "Determinants of rooftop solar uptake: A comparative analysis of the residential and non-residential sectors in the Basque Country (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    2. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2023. "Neighbourhood-level spatial determinants of residential solar photovoltaic adoption in the Netherlands," Renewable Energy, Elsevier, vol. 206(C), pages 1239-1248.
    3. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M. & Truckell, Ian & Hart, Phil, 2021. "Energy transition at local level: Analyzing the role of peer effects and socio-economic factors on UK solar photovoltaic deployment," Energy Policy, Elsevier, vol. 148(PB).
    4. Best, Rohan & Chareunsy, Andrea, 2022. "The impact of income on household solar panel uptake: Exploring diverse results using Australian data," Energy Economics, Elsevier, vol. 112(C).
    5. Tao, Linwei & Hayashi, Kiichiro & Shiraki, Hiroto & Huang, Xiaoxun & Dem, Phub, 2024. "Exploration of determinants underlying regional disparity in rooftop photovoltaic adoption: A case study in Nagoya, Japan," Applied Energy, Elsevier, vol. 367(C).
    6. Collier, Samuel H.C. & House, Jo I. & Connor, Peter M. & Harris, Richard, 2023. "Distributed local energy: Assessing the determinants of domestic-scale solar photovoltaic uptake at the local level across England and Wales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    7. Zander, Kerstin K., 2020. "Unrealised opportunities for residential solar panels in Australia," Energy Policy, Elsevier, vol. 142(C).
    8. Stewart, Fraser, 2022. "Friends with benefits: How income and peer diffusion combine to create an inequality “trap” in the uptake of low-carbon technologies," Energy Policy, Elsevier, vol. 163(C).
    9. Lan, Haifeng & Gou, Zhonghua & Lu, Yi, 2021. "Machine learning approach to understand regional disparity of residential solar adoption in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    10. Pronti, A. & Zoboli, R., 2024. "Something new under the sun. A spatial econometric analysis of the adoption of photovoltaic systems in Italy," Energy Economics, Elsevier, vol. 134(C).
    11. Best, Rohan & Trück, Stefan, 2020. "Capital and policy impacts on Australian small-scale solar installations," Energy Policy, Elsevier, vol. 136(C).
    12. Jianhua Zhang & Xiaolong Liu & Dimitris Ballas, 2023. "Spatial and relational peer effects on environmental behavioral imitation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(4), pages 575-599, October.
    13. Emily Schulte & Fabian Scheller & Daniel Sloot & Thomas Bruckner, 2021. "A meta-analysis of residential PV adoption: the important role of perceived benefits, intentions and antecedents in solar energy acceptance," Papers 2112.12464, arXiv.org.
    14. Maren Springsklee & Fabian Scheller, 2022. "Exploring non-residential technology adoption: an empirical analysis of factors associated with the adoption of photovoltaic systems by municipal authorities in Germany," Papers 2212.05281, arXiv.org.
    15. Palm, A., 2020. "Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Esplin, Ryan & Nelson, Tim, 2022. "Redirecting solar feed in tariffs to residential battery storage: Would it be worth it?," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 373-389.
    17. Moon-Hyun Kim & Tae-Hyoung Tommy Gim, 2021. "Spatial Characteristics of the Diffusion of Residential Solar Photovoltaics in Urban Areas: A Case of Seoul, South Korea," IJERPH, MDPI, vol. 18(2), pages 1-16, January.
    18. Best, Rohan & Burke, Paul J. & Nishitateno, Shuhei, 2019. "Evaluating the effectiveness of Australia's Small-scale Renewable Energy Scheme for rooftop solar," Energy Economics, Elsevier, vol. 84(C).
    19. Paul Simshauser & Tim Nelson & Joel Gilmore, 2022. "The sunshine state: implications from mass rooftop solar PV take-up rates in Queensland," Working Papers EPRG2219, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    20. Zhang, Yanquan & Chang, Ruidong & Zuo, Jian & Shabunko, Veronika & Zheng, Xian, 2023. "Regional disparity of residential solar panel diffusion in Australia: The roles of socio-economic factors," Renewable Energy, Elsevier, vol. 206(C), pages 808-819.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.