IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp363-374.html
   My bibliography  Save this article

Spatially-explicit models should consider real-world diffusion of renewable electricity: Solar PV example in Switzerland

Author

Listed:
  • Thormeyer, Christoph
  • Sasse, Jan-Philipp
  • Trutnevyte, Evelina

Abstract

Spatially-explicit bottom-up energy models with detailed renewable energy representation are increasingly developed. In order to inform such models, we investigate spatial diffusion patterns of solar PV projects in 2′222 Swiss municipalities. Using a dataset of feed-in tariff and one-time subsidy recipients in 2016, we show that PV diffusion was spatially uneven throughout Switzerland in terms of four indicators: the number of PV projects per municipality, per 1′000 inhabitants, per unit of municipal electricity demand, and per unit of municipal land area. Urban-rural divide and exploitable solar PV potential are the key, but not the only predictors of the spatial heterogeneity in PV diffusion. The structure of the municipal economy, socio-demographic characteristics, regional spillover effects, and additional differences in local contexts, such as local policies, matter as well. Spatial diffusion patterns to some extent structurally differ across sub-national regions too, indicating that such empirical investigations are valuable in order to understand what can be generalized. We conclude with recommendations for developing and validating spatially-resolved energy models so that they capture realistic patterns of solar PV diffusion: gather, maintain and analyze spatial data on PV projects and develop robust modelling functions that do not only rely on PV potential.

Suggested Citation

  • Thormeyer, Christoph & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2020. "Spatially-explicit models should consider real-world diffusion of renewable electricity: Solar PV example in Switzerland," Renewable Energy, Elsevier, vol. 145(C), pages 363-374.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:363-374
    DOI: 10.1016/j.renene.2019.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119308390
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2019. "Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation," Applied Energy, Elsevier, vol. 254(C).
    2. Gupta, Ruchi & Pena-Bello, Alejandro & Streicher, Kai Nino & Roduner, Cattia & Farhat, Yamshid & Thöni, David & Patel, Martin Kumar & Parra, David, 2021. "Spatial analysis of distribution grid capacity and costs to enable massive deployment of PV, electric mobility and electric heating," Applied Energy, Elsevier, vol. 287(C).
    3. Collier, Samuel H.C. & House, Jo I. & Connor, Peter M. & Harris, Richard, 2023. "Distributed local energy: Assessing the determinants of domestic-scale solar photovoltaic uptake at the local level across England and Wales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Kristina Kilikevičienė & Jonas Matijošius & Artūras Kilikevičius & Mindaugas Jurevičius & Vytautas Makarskas & Jacek Caban & Andrzej Marczuk, 2019. "Research of the Energy Losses of Photovoltaic (PV) Modules after Hail Simulation Using a Newly-Created Testbed," Energies, MDPI, vol. 12(23), pages 1-14, November.
    5. Heinisch, Verena & Dujardin, Jérôme & Gabrielli, Paolo & Jain, Pranjal & Lehning, Michael & Sansavini, Giovanni & Sasse, Jan-Philipp & Schaffner, Christian & Schwarz, Marius & Trutnevyte, Evelina, 2023. "Inter-comparison of spatial models for high shares of renewable electricity in Switzerland," Applied Energy, Elsevier, vol. 350(C).
    6. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    7. Anna Szeląg-Sikora & Jakub Sikora & Marcin Niemiec & Zofia Gródek-Szostak & Marcin Suder & Maciej Kuboń & Tomasz Borkowski & Gabriela Malik, 2021. "Solar Power: Stellar Profit or Astronomic Cost? A Case Study of Photovoltaic Installations under Poland’s National Prosumer Policy in 2016–2020," Energies, MDPI, vol. 14(14), pages 1-17, July.
    8. Lonergan, Katherine Emma & Sansavini, Giovanni, 2022. "Business structure of electricity distribution system operator and effect on solar photovoltaic uptake: An empirical case study for Switzerland," Energy Policy, Elsevier, vol. 160(C).
    9. Walch, Alina & Rüdisüli, Martin, 2023. "Strategic PV expansion and its impact on regional electricity self-sufficiency: Case study of Switzerland," Applied Energy, Elsevier, vol. 346(C).
    10. Heleno, Miguel & Sehloff, David & Coelho, Antonio & Valenzuela, Alan, 2020. "Probabilistic impact of electricity tariffs on distribution grids considering adoption of solar and storage technologies," Applied Energy, Elsevier, vol. 279(C).
    11. Stewart, Fraser, 2022. "Friends with benefits: How income and peer diffusion combine to create an inequality “trap” in the uptake of low-carbon technologies," Energy Policy, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:363-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.