IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v51y2015icp417-429.html
   My bibliography  Save this article

Regional distribution of photovoltaic deployment in the UK and its determinants: A spatial econometric approach

Author

Listed:
  • Balta-Ozkan, Nazmiye
  • Yildirim, Julide
  • Connor, Peter M.

Abstract

Photovoltaic (PV) panels offer significant potential for contributing to the UK's energy policy goals relating to decarbonisation of the energy system, security of supply and affordability. The substantive drop in the cost of panels since 2007, coupled with the introduction of the Feed-in Tariff (FiT) Scheme in 2010, has resulted in a rapid increase in installation of PV panels in the UK, from 26.5MWp in 2009 to over 5GW by the end of 2014. Yet there has been no comprehensive analysis of the determinants of PV deployment in the UK. This paper addresses this gap by employing spatial econometrics methods to a recently available data set at a fine geographical detail. Following a traditional regression analysis, a general to specific approach has been adopted where spatial variations in the relationships have been examined utilising the spatial Durbin model using the cross-sectional data relating to the UK NUTS level 3 data. Empirical results indicate that demand for electricity, population density, pollution levels, education level of households and housing types are among the factors that affect PV uptake in a region. Moreover Lagrange Multiplier test results indicate that the spatial Durbin model may be properly applied to describe the PV uptake relationship in the UK as there are significant regional spillover effects.

Suggested Citation

  • Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M., 2015. "Regional distribution of photovoltaic deployment in the UK and its determinants: A spatial econometric approach," Energy Economics, Elsevier, vol. 51(C), pages 417-429.
  • Handle: RePEc:eee:eneeco:v:51:y:2015:i:c:p:417-429
    DOI: 10.1016/j.eneco.2015.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988315002248
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Jager, Wander, 2006. "Stimulating the diffusion of photovoltaic systems: A behavioural perspective," Energy Policy, Elsevier, vol. 34(14), pages 1935-1943, September.
    3. Stephen Gibbons & Henry G. Overman, 2012. "Mostly Pointless Spatial Econometrics?," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 172-191, May.
    4. Keirstead, James, 2007. "Behavioural responses to photovoltaic systems in the UK domestic sector," Energy Policy, Elsevier, vol. 35(8), pages 4128-4141, August.
    5. J. Paul Elhorst & Sandy Fréret, 2009. "Evidence Of Political Yardstick Competition In France Using A Two‐Regime Spatial Durbin Model With Fixed Effects," Journal of Regional Science, Wiley Blackwell, vol. 49(5), pages 931-951, December.
    6. Lutzenhiser, Loren, 1992. "A cultural model of household energy consumption," Energy, Elsevier, vol. 17(1), pages 47-60.
    7. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    8. Zhai, Pei & Williams, Eric D., 2012. "Analyzing consumer acceptance of photovoltaics (PV) using fuzzy logic model," Renewable Energy, Elsevier, vol. 41(C), pages 350-357.
    9. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    10. Grau, Thilo, 2014. "Responsive feed-in tariff adjustment to dynamic technology development," Energy Economics, Elsevier, vol. 44(C), pages 36-46.
    11. Allen, S.R. & Hammond, G.P. & McManus, M.C., 2008. "Prospects for and barriers to domestic micro-generation: A United Kingdom perspective," Applied Energy, Elsevier, vol. 85(6), pages 528-544, June.
    12. Florax, Raymond J. G. M. & Folmer, Hendrik & Rey, Sergio J., 2003. "Specification searches in spatial econometrics: the relevance of Hendry's methodology," Regional Science and Urban Economics, Elsevier, vol. 33(5), pages 557-579, September.
    13. Perrels, Adriaan & Weber, Christoph, 2000. "Modelling Impacts of Lifestyle on Energy Demand and Related Emissions," Discussion Papers 228, VATT Institute for Economic Research.
    14. Luisa Corrado & Bernard Fingleton, 2012. "Where Is The Economics In Spatial Econometrics?," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 210-239, May.
    15. Sardianou, E. & Genoudi, P., 2013. "Which factors affect the willingness of consumers to adopt renewable energies?," Renewable Energy, Elsevier, vol. 57(C), pages 1-4.
    16. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    17. Baltagi, Badi H. & Rokicki, Bartlomiej, 2014. "The spatial Polish wage curve with gender effects: Evidence from the Polish Labor Survey," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 36-47.
    18. David M. Newbery, 2012. "Contracting for Wind Generation," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    19. Sven Müller & Johannes Rode, 2013. "The adoption of photovoltaic systems in Wiesbaden, Germany," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 22(5), pages 519-535, July.
    20. Bagozzi, Richard P, 2000. "On the Concept of Intentional Social Action in Consumer Behavior," Journal of Consumer Research, Oxford University Press, vol. 27(3), pages 388-396, December.
    21. Urban, Jan & Ščasný, Milan, 2012. "Exploring domestic energy-saving: The role of environmental concern and background variables," Energy Policy, Elsevier, vol. 47(C), pages 69-80.
    22. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    23. Faiers, Adam & Neame, Charles, 2006. "Consumer attitudes towards domestic solar power systems," Energy Policy, Elsevier, vol. 34(14), pages 1797-1806, September.
    24. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 531-542.
    25. Laura-Lucia Richter, 2013. "Social Effects in the Diffusion of solar Photovoltaic Technology in the UK," Cambridge Working Papers in Economics 1357, Faculty of Economics, University of Cambridge.
    26. Weber, Christoph & Perrels, Adriaan, 2000. "Modelling lifestyle effects on energy demand and related emissions," Energy Policy, Elsevier, vol. 28(8), pages 549-566, July.
    27. Zhang, Yu & Song, Junghyun & Hamori, Shigeyuki, 2011. "Impact of subsidy policies on diffusion of photovoltaic power generation," Energy Policy, Elsevier, vol. 39(4), pages 1958-1964, April.
    28. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2013. "Motivations and barriers associated with adopting microgeneration energy technologies in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 655-666.
    29. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    30. Woodman, B. & Mitchell, C., 2011. "Learning from experience? The development of the Renewables Obligation in England and Wales 2002-2010," Energy Policy, Elsevier, vol. 39(7), pages 3914-3921, July.
    31. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    32. Massetti, Emanuele & Ricci, Elena Claire, 2013. "An assessment of the optimal timing and size of investments in concentrated solar power," Energy Economics, Elsevier, vol. 38(C), pages 186-203.
    33. Bridge, Gavin & Bouzarovski, Stefan & Bradshaw, Michael & Eyre, Nick, 2013. "Geographies of energy transition: Space, place and the low-carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 331-340.
    34. Joris Pinkse & Margaret E. Slade, 2010. "The Future Of Spatial Econometrics," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 103-117, February.
    35. Cherrington, R. & Goodship, V. & Longfield, A. & Kirwan, K., 2013. "The feed-in tariff in the UK: A case study focus on domestic photovoltaic systems," Renewable Energy, Elsevier, vol. 50(C), pages 421-426.
    36. Muhammad-Sukki, Firdaus & Ramirez-Iniguez, Roberto & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abu-Bakar, Siti Hawa & McMeekin, Scott G. & Stewart, Brian G., 2013. "Revised feed-in tariff for solar photovoltaic in the United Kingdom: A cloudy future ahead?," Energy Policy, Elsevier, vol. 52(C), pages 832-838.
    37. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis," Energy Economics, Elsevier, vol. 42(C), pages 271-288.
    38. Claudy, Marius C. & Michelsen, Claus & O'Driscoll, Aidan, 2011. "The diffusion of microgeneration technologies - assessing the influence of perceived product characteristics on home owners' willingness to pay," Energy Policy, Elsevier, vol. 39(3), pages 1459-1469, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M. & Truckell, Ian & Hart, Phil, 2021. "Energy transition at local level: Analyzing the role of peer effects and socio-economic factors on UK solar photovoltaic deployment," Energy Policy, Elsevier, vol. 148(PB).
    2. Balta-Ozkan, Nazmiye & Le Gallo, Julie, 2018. "Spatial variation in energy attitudes and perceptions: Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2160-2180.
    3. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    4. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    5. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    6. Martínez, Constanza & León, Carlos, 2016. "The cost of collateralized borrowing in the Colombian money market: Does connectedness matter?," Journal of Financial Stability, Elsevier, vol. 25(C), pages 193-205.
    7. Heiskanen, Eva & Matschoss, Kaisa, 2017. "Understanding the uneven diffusion of building-scale renewable energy systems: A review of household, local and country level factors in diverse European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 580-591.
    8. Solmaria Halleck Vega & J. Paul Elhorst, 2015. "The Slx Model," Journal of Regional Science, Wiley Blackwell, vol. 55(3), pages 339-363, June.
    9. Noemi Munkacsi & Krushna Mahapatra, 2019. "Communication and Household Adoption of Heating Products in Hungary," Energies, MDPI, Open Access Journal, vol. 12(2), pages 1-22, January.
    10. Allan, Grant & Eromenko, Igor & Gilmartin, Michelle & Kockar, Ivana & McGregor, Peter, 2015. "The economics of distributed energy generation: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 543-556.
    11. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    12. Firgo, Matthias & Pennerstorfer, Dieter & Weiss, Christoph R., 2015. "Centrality and pricing in spatially differentiated markets: The case of gasoline," International Journal of Industrial Organization, Elsevier, vol. 40(C), pages 81-90.
    13. Jülide Yildirim & Nadir Öcal, 2016. "Military expenditures, economic growth and spatial spillovers," Defence and Peace Economics, Taylor & Francis Journals, vol. 27(1), pages 87-104, February.
    14. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2013. "Motivations and barriers associated with adopting microgeneration energy technologies in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 655-666.
    15. Allan, Grant J. & McIntyre, Stuart G., 2017. "Green in the heart or greens in the wallet? The spatial uptake of small-scale renewable technologies," Energy Policy, Elsevier, vol. 102(C), pages 108-115.
    16. Yamamoto, Yoshihiro, 2015. "Opinion leadership and willingness to pay for residential photovoltaic systems," Energy Policy, Elsevier, vol. 83(C), pages 185-192.
    17. Klingler, Anna-Lena, 2017. "Self-consumption with PV+Battery systems: A market diffusion model considering individual consumer behaviour and preferences," Applied Energy, Elsevier, vol. 205(C), pages 1560-1570.
    18. Zhou, Yiwei & Wang, Xiaokun & Holguín-Veras, José, 2016. "Discrete choice with spatial correlation: A spatial autoregressive binary probit model with endogenous weight matrix (SARBP-EWM)," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 440-455.
    19. Jesùs Mur, 2013. "Causality, Uncertainty and Identification: Three Issues on the Spatial Econometrics Agenda," SCIENZE REGIONALI, FrancoAngeli Editore, vol. 2013(1), pages 5-27.
    20. Yunlong Gong & Peter Boelhouwer & Jan de Haan, 2014. "Spatial Dependence in House Prices: Evidence from China's Interurban Housing Market," ERSA conference papers ersa14p448, European Regional Science Association.

    More about this item

    Keywords

    Photovoltaic; PV; Spatial spillover; FIT; Spatial econometrics; Spatial energy;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:51:y:2015:i:c:p:417-429. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.