IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4155-d1718104.html
   My bibliography  Save this article

Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates

Author

Listed:
  • Khushbu Mankani

    (School of Engineering and Physical Sciences, Heriot-Watt University, Dubai P.O. Box 501745, United Arab Emirates)

  • Mutasim Nour

    (School of Engineering and Physical Sciences, Heriot-Watt University, Dubai P.O. Box 501745, United Arab Emirates)

  • Hassam Nasarullah Chaudhry

    (School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Dubai P.O. Box 501745, United Arab Emirates)

Abstract

Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green building certifications present opportunities for retrofitting and performance optimization. This study investigates the energy and thermal comfort performance of a LEED Gold-certified, mixed-use university campus in Dubai through a calibrated digital twin developed using IES thermal modelling software. The analysis evaluated existing sustainable design strategies alongside three retrofit energy conservation measures (ECMs): (1) improved building envelope U-values, (2) installation of additional daylight sensors, and (3) optimization of fan coil unit efficiency. Simulation results demonstrated that the three ECMs collectively achieved a total reduction of 15% in annual energy consumption. Thermal comfort was assessed using operative temperature distributions, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfaction (PPD) metrics. While fan coil optimization yielded the highest energy savings, it led to less favorable comfort outcomes. In contrast, enhancing envelope U-values maintained indoor conditions consistently within ASHRAE-recommended comfort zones. To further support energy reduction and progress toward Net Zero targets, the study also evaluated the integration of a 228.87 kW rooftop solar photovoltaic (PV) system, which offset 8.09% of the campus’s annual energy demand. By applying data-driven thermal modelling to assess retrofit impacts on both energy performance and occupant comfort in a certified green building, this study addresses a critical gap in the literature and offers a replicable framework for advancing building performance in hot climate regions.

Suggested Citation

  • Khushbu Mankani & Mutasim Nour & Hassam Nasarullah Chaudhry, 2025. "Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates," Energies, MDPI, vol. 18(15), pages 1-35, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4155-:d:1718104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Islam, M.D. & Kubo, I. & Ohadi, M. & Alili, A.A., 2009. "Measurement of solar energy radiation in Abu Dhabi, UAE," Applied Energy, Elsevier, vol. 86(4), pages 511-515, April.
    2. Khalilnejad, Arash & French, Roger H. & Abramson, Alexis R., 2021. "Evaluation of cooling setpoint setback savings in commercial buildings using electricity and exterior temperature time series data," Energy, Elsevier, vol. 233(C).
    3. Dhaouadi, Rached & Al-Othman, Amani & Aidan, Ahmed A. & Tawalbeh, Muhammad & Zannerni, Rawan, 2021. "A characterization study for the properties of dust particles collected on photovoltaic (PV) panels in Sharjah, United Arab Emirates," Renewable Energy, Elsevier, vol. 171(C), pages 133-140.
    4. Mohammed Albattah & Daniel Efurosibina Attoye, 2021. "A Quantitative Investigation on Awareness of Renewable Energy Building Technology in the United Arab Emirates," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    5. Moncef Krarti, 2019. "Evaluation of Energy Efficiency Potential for the Building Sector in the Arab Region," Energies, MDPI, vol. 12(22), pages 1-45, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eltbaakh, Yousef A. & Ruslan, M.H. & Alghoul, M.A. & Othman, M.Y. & Sopian, K. & Fadhel, M.I., 2011. "Measurement of total and spectral solar irradiance: Overview of existing research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1403-1426, April.
    2. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    3. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    4. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    5. Fan, Siyuan & Wang, Xiao & Wang, Zun & Sun, Bo & Zhang, Zhenhai & Cao, Shengxian & Zhao, Bo & Wang, Yu, 2022. "A novel image enhancement algorithm to determine the dust level on photovoltaic (PV) panels," Renewable Energy, Elsevier, vol. 201(P1), pages 172-180.
    6. Sachdeva, Jatin & Singh, Onkar, 2019. "Thermodynamic analysis of solar powered triple combined Brayton, Rankine and organic Rankine cycle for carbon free power," Renewable Energy, Elsevier, vol. 139(C), pages 765-780.
    7. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Shaima A. Alnaqbi & Abdul Hai Alami, 2023. "Sustainability and Renewable Energy in the UAE: A Case Study of Sharjah," Energies, MDPI, vol. 16(20), pages 1-30, October.
    9. Bao, Qiwei & Qian, Weixing & Ma, Gang & Qiu, Xiao & Zhang, Haocheng & Zhou, Houchen & Chen, Mingjia, 2025. "Influence of the change direction of total solar irradiance at the inclined surface on power generation performance of photovoltaic power station: A focus on output power and photoelectric conversion ," Energy, Elsevier, vol. 324(C).
    10. Zhou, Zhigao & Wang, Lunche & Lin, Aiwen & Zhang, Ming & Niu, Zigeng, 2018. "Innovative trend analysis of solar radiation in China during 1962–2015," Renewable Energy, Elsevier, vol. 119(C), pages 675-689.
    11. Souhankar, Amirhossein & Mortezaee, Ahmad & Hafezi, Reza, 2023. "Potentials for energy-saving and efficiency capacities in Iran: An interpretive structural model to prioritize future national policies," Energy, Elsevier, vol. 262(PB).
    12. Rehman, Tauseef-ur & Qaisrani, Mumtaz A. & Shafiq, M. Basit & Baba, Yousra Filali & Aslfattahi, Navid & Shahsavar, Amin & Cheema, Taqi Ahmad & Park, Cheol Woo, 2025. "Global perspectives on advancing photovoltaic system performance—A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    13. Zhao, Weiping & Lv, Yukun & Dong, Zhiguang & Zhao, Fang & Lv, Fengyong & Yan, Weiping, 2024. "Effect of self-cleaning superhydrophobic coating on dust deposition and performance of PV modules," Renewable Energy, Elsevier, vol. 227(C).
    14. Mateos, D. & Antón, M. & Valenzuela, A. & Cazorla, A. & Olmo, F.J. & Alados-Arboledas, L., 2014. "Efficiency of clouds on shortwave radiation using experimental data," Applied Energy, Elsevier, vol. 113(C), pages 1216-1219.
    15. Huang, Maoquan & Yang, Rui & Tang, G.H. & Pu, Jin Huan & Sun, Qie & Du, Mu, 2025. "Quantifying the effects of dust characteristics on the performance of radiative cooling PV systems," Applied Energy, Elsevier, vol. 377(PD).
    16. Abdalrahman Alsulaili & Noor Aboramyah & Nasser Alenezi & Mohamad Alkhalidi, 2024. "Advancing Electricity Consumption Forecasts in Arid Climates through Machine Learning and Statistical Approaches," Sustainability, MDPI, vol. 16(15), pages 1-14, July.
    17. Mir Sayed Shah Danish, 2023. "AI and Expert Insights for Sustainable Energy Future," Energies, MDPI, vol. 16(8), pages 1-27, April.
    18. Haneen Abuzaid & Mahmoud Awad & Abdulrahim Shamayleh, 2024. "Photovoltaic Modules’ Cleaning Method Selection for the MENA Region," Sustainability, MDPI, vol. 16(21), pages 1-23, October.
    19. Hamed Hanifi & Bengt Jaeckel & Matthias Pander & David Dassler & Sagarika Kumar & Jens Schneider, 2022. "Techno-Economic Assessment of Half-Cell Modules for Desert Climates: An Overview on Power, Performance, Durability and Costs," Energies, MDPI, vol. 15(9), pages 1-21, April.
    20. Bachour, D. & Perez-Astudillo, D., 2014. "Ground measurements of Global Horizontal Irradiation in Doha, Qatar," Renewable Energy, Elsevier, vol. 71(C), pages 32-36.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4155-:d:1718104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.