IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v71y2014icp32-36.html
   My bibliography  Save this article

Ground measurements of Global Horizontal Irradiation in Doha, Qatar

Author

Listed:
  • Bachour, D.
  • Perez-Astudillo, D.

Abstract

The present work shows an analysis of ground measurements of Global Horizontal Irradiation (GHI) taken at the Doha International Airport for the period 2008–2012. Inter-annual variability and monthly averages of GHI values were calculated from the available records of daily total irradiation values, analysed and discussed along with the daily averages. The average daily GHI value in Doha for the whole 5-year period is 5.61 kWh/m2/day, a total of 2048 kWh/m2/year. The highest monthly average is 6.97 kWh/m2/day during the month of June, followed by May with 6.92 kWh/m2/day. Day 149 of the year, which corresponds to the 29th of May, shows the highest daily average for this period, with 7.49 kWh/m2/day. In addition to global solar radiation, the daily and monthly average clearness indices along with three meteorological parameters (air temperature, relative humidity and air pressure) are presented and analysed. The annual average of clearness index for Doha obtained from ground measurements is 0.62, somewhat higher than the 22-year averaged value provided by the NASA-SSE database, 0.57. GHI and clearness index values are important parameters for solar-related projects; GHI assessment, for instance, is vital for PV applications. Even though the measurements were taken in Doha, a coastal and an expanding city, the values found in this study indicate that Doha has a good potential for this kind of applications and better conditions could be expected in other areas of Qatar.

Suggested Citation

  • Bachour, D. & Perez-Astudillo, D., 2014. "Ground measurements of Global Horizontal Irradiation in Doha, Qatar," Renewable Energy, Elsevier, vol. 71(C), pages 32-36.
  • Handle: RePEc:eee:renene:v:71:y:2014:i:c:p:32-36
    DOI: 10.1016/j.renene.2014.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114002560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Islam, M.D. & Kubo, I. & Ohadi, M. & Alili, A.A., 2009. "Measurement of solar energy radiation in Abu Dhabi, UAE," Applied Energy, Elsevier, vol. 86(4), pages 511-515, April.
    2. Aksakal, Ahmet & Rehman, Shafiqur, 1999. "Global solar radiation in Northeastern Saudi Arabia," Renewable Energy, Elsevier, vol. 17(4), pages 461-472.
    3. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    4. Bulut, Hüsamettin & Büyükalaca, Orhan, 2007. "Simple model for the generation of daily global solar-radiation data in Turkey," Applied Energy, Elsevier, vol. 84(5), pages 477-491, May.
    5. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    6. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    7. Al-Hinai, H. A. & Al-Alawi, S. M., 1995. "Typical solar radiation data for Oman," Applied Energy, Elsevier, vol. 52(2-3), pages 153-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marzo, A. & Trigo-Gonzalez, M. & Alonso-Montesinos, J. & Martínez-Durbán, M. & López, G. & Ferrada, P. & Fuentealba, E. & Cortés, M. & Batlles, F.J., 2017. "Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation," Renewable Energy, Elsevier, vol. 113(C), pages 303-311.
    2. Adnan Ayaz & Faraz Ahmad & Mohammad Abdul Aziz Irfan & Zabdur Rehman & Krzysztof Rajski & Jan Danielewicz, 2022. "Comparison of Ground-Based Global Horizontal Irradiance and Direct Normal Irradiance with Satellite-Based SUNY Model," Energies, MDPI, vol. 15(7), pages 1-14, March.
    3. Saoud A. Al-Janahi & Omar Ellabban & Sami G. Al-Ghamdi, 2020. "A Novel BIPV Reconfiguration Algorithm for Maximum Power Generation under Partial Shading," Energies, MDPI, vol. 13(17), pages 1-25, August.
    4. Martín-Pomares, Luis & Martínez, Diego & Polo, Jesús & Perez-Astudillo, Daniel & Bachour, Dunia & Sanfilippo, Antonio, 2017. "Analysis of the long-term solar potential for electricity generation in Qatar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1231-1246.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    2. Khosravi, Mohsen & Fazelpour, Farivar & Rosen, Marc A., 2019. "Improved application of a solar chimney concept in a two-story building: An enhanced geometry through a numerical approach," Renewable Energy, Elsevier, vol. 143(C), pages 569-585.
    3. Juaidi, Adel & Montoya, Francisco G. & Gázquez, Jose A. & Manzano-Agugliaro, Francisco, 2016. "An overview of energy balance compared to sustainable energy in United Arab Emirates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1195-1209.
    4. Islam, M.D. & Alili, A.A. & Kubo, I. & Ohadi, M., 2010. "Measurement of solar-energy (direct beam radiation) in Abu Dhabi, UAE," Renewable Energy, Elsevier, vol. 35(2), pages 515-519.
    5. Zawilska, E. & Brooks, M.J., 2011. "An assessment of the solar resource for Durban, South Africa," Renewable Energy, Elsevier, vol. 36(12), pages 3433-3438.
    6. Tilmann Rave, 2013. "Innovation Indicators on Global Climate Change – R&D Expenditure and Patents," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    7. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    8. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    9. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    10. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    11. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    12. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    13. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    14. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    15. Perrihan Al-Riffai & Julian Blohmke & Clemens Breisinger & Manfred Wiebelt, 2015. "Harnessing the Sun and Wind for Economic Development? An Economy-Wide Assessment for Egypt," Sustainability, MDPI, vol. 7(6), pages 1-27, June.
    16. Kim, Yeong Jae & Wilson, Charlie, 2019. "Analysing energy innovation portfolios from a systemic perspective," Energy Policy, Elsevier, vol. 134(C).
    17. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    18. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    19. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    20. Jin-Young Kim & Hyun-Goo Kim & Yong-Heack Kang, 2017. "Offshore Wind Speed Forecasting: The Correlation between Satellite-Observed Monthly Sea Surface Temperature and Wind Speed over the Seas around the Korean Peninsula," Energies, MDPI, vol. 10(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:71:y:2014:i:c:p:32-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.