IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v84y2007i5p477-491.html
   My bibliography  Save this article

Simple model for the generation of daily global solar-radiation data in Turkey

Author

Listed:
  • Bulut, Hüsamettin
  • Büyükalaca, Orhan

Abstract

Modelling, performance analysis, and designing of solar energy systems depend on solar radiation data. In this study, a simple model for estimating the daily global radiation is developed. The model is based on a trigonometric function, which has only one independent parameter, namely the day of the year. The model is tested for 68 locations in Turkey using the data measured during at least 10 years. It is seen that predictions from the model agree well with the long-term measured data. The predictions are also compared with the data available in literature for Turkey. It is expected that the model developed for daily global solar radiation will be useful to the designers of energy-related systems as well as to those who need to estimates of yearly variation of global solar-radiation for any specific location in Turkey.

Suggested Citation

  • Bulut, Hüsamettin & Büyükalaca, Orhan, 2007. "Simple model for the generation of daily global solar-radiation data in Turkey," Applied Energy, Elsevier, vol. 84(5), pages 477-491, May.
  • Handle: RePEc:eee:appene:v:84:y:2007:i:5:p:477-491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(06)00148-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wong, L. T. & Chow, W. K., 2001. "Solar radiation model," Applied Energy, Elsevier, vol. 69(3), pages 191-224, July.
    2. Zeroual, A. & Ankrim, M. & Wilkinson, A.J., 1995. "Stochastic modelling of daily global solar radiation measured in Marrakesh, Morocco," Renewable Energy, Elsevier, vol. 6(7), pages 787-793.
    3. Ecevit, A. & Akinoglu, B.G. & Aksoy, B., 2002. "Generation of a typical meteorological year using sunshine duration data," Energy, Elsevier, vol. 27(10), pages 947-954.
    4. Badescu, Viorel, 1999. "Correlations to estimate monthly mean daily solar global irradiation: application to Romania," Energy, Elsevier, vol. 24(10), pages 883-893.
    5. Bulut, Hüsamettin, 2004. "Typical solar radiation year for southeastern Anatolia," Renewable Energy, Elsevier, vol. 29(9), pages 1477-1488.
    6. Jain, P.K. & Lungu, E.M., 2002. "Stochastic models for sunshine duration and solar irradiation," Renewable Energy, Elsevier, vol. 27(2), pages 197-209.
    7. Trabea, A.A. & Shaltout, M.A.Mosalam, 2000. "Correlation of global solar radiation with meteorological parameters over Egypt," Renewable Energy, Elsevier, vol. 21(2), pages 297-308.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    2. Li, Huashan & Ma, Weibin & Lian, Yongwang & Wang, Xianlong, 2010. "Estimating daily global solar radiation by day of year in China," Applied Energy, Elsevier, vol. 87(10), pages 3011-3017, October.
    3. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    4. Pusat, Saban & Ekmekçi, İsmail & Akkoyunlu, Mustafa Tahir, 2015. "Generation of typical meteorological year for different climates of Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 144-151.
    5. Kaplani, E. & Kaplanis, S. & Mondal, S., 2018. "A spatiotemporal universal model for the prediction of the global solar radiation based on Fourier series and the site altitude," Renewable Energy, Elsevier, vol. 126(C), pages 933-942.
    6. Anton Vernet & Alexandre Fabregat, 2023. "Evaluation of Empirical Daily Solar Radiation Models for the Northeast Coast of the Iberian Peninsula," Energies, MDPI, vol. 16(6), pages 1-18, March.
    7. Yıldırım, H. Başak & Teke, Ahmet & Antonanzas-Torres, Fernando, 2018. "Evaluation of classical parametric models for estimating solar radiation in the Eastern Mediterranean region of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2053-2065.
    8. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    9. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
    10. Janjai, S. & Deeyai, P., 2009. "Comparison of methods for generating typical meteorological year using meteorological data from a tropical environment," Applied Energy, Elsevier, vol. 86(4), pages 528-537, April.
    11. Zang, Haixiang & Xu, Qingshan & Bian, Haihong, 2012. "Generation of typical solar radiation data for different climates of China," Energy, Elsevier, vol. 38(1), pages 236-248.
    12. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    13. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    14. Anjorin O.F. & Utah E.U & Likita M.S, 2014. "Estimation of Hourly Photo synthetically- Active Radiation (PAR) From Hourly Global Solar Radiation (GSR) In Jos, Nigeria," Asian Review of Environmental and Earth Sciences, Asian Online Journal Publishing Group, vol. 1(2), pages 43-50.
    15. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2008. "Solar radiation modelling for the simulation of photovoltaic systems," Renewable Energy, Elsevier, vol. 33(5), pages 1109-1120.
    16. Amani, Madjid & Ghenaiet, Adel, 2020. "Novel hybridization of solar central receiver system with combined cycle power plant," Energy, Elsevier, vol. 201(C).
    17. Korachagaon, Iranna & Bapat, V.N., 2012. "General formula for the estimation of global solar radiation on earth’s surface around the globe," Renewable Energy, Elsevier, vol. 41(C), pages 394-400.
    18. Chang, Kai & Zhang, Qingyuan, 2019. "Improvement of the hourly global solar model and solar radiation for air-conditioning design in China," Renewable Energy, Elsevier, vol. 138(C), pages 1232-1238.
    19. Yao, Wanxiang & Zhang, Chunxiao & Hao, Haodong & Wang, Xiao & Li, Xianli, 2018. "A support vector machine approach to estimate global solar radiation with the influence of fog and haze," Renewable Energy, Elsevier, vol. 128(PA), pages 155-162.
    20. Jain, P.K. & Lungu, E.M. & Prakash, J., 2003. "Bivarate models: relationships between solar irradiation and either sunshine duration or extremum temperatures," Renewable Energy, Elsevier, vol. 28(8), pages 1211-1223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:84:y:2007:i:5:p:477-491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.