IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221013657.html
   My bibliography  Save this article

Evaluation of cooling setpoint setback savings in commercial buildings using electricity and exterior temperature time series data

Author

Listed:
  • Khalilnejad, Arash
  • French, Roger H.
  • Abramson, Alexis R.

Abstract

Commercial buildings account for a significant amount of total energy produced in the US, and the Heating Ventilation and Cooling (HVAC) systems are one of the most significant components of their overall consumption. In this study, we proposed a new data-driven approach to evaluate HVAC cooling systems in commercial buildings and identify savings opportunities. The focus is an investigation of the impact of thermostat setpoint setback but using only whole building, electricity data taken at 15-min intervals for the analysis. We conducted a comparative study of setpoint setback characteristics on 432 commercial buildings with 5 building usage types across the United States. To accomplish this, both piecewise and Random Forest regression algorithms were employed using electricity and exterior temperature datasets to identify operational characteristics and the effective setpoints in the building to determine the corresponding savings opportunities. Both occupied and unoccupied time periods were studied across cooling degree days (CDD), when air conditioning is typically operational. The results show that in commercial buildings, on average, cooling systems account for 9.5% of total consumption. When a one degree setback during the cooling season is applied, an average of approximately 1.1% of annual consumption is achieved; retail and office buildings demonstrate the highest potential for savings. Additionally, we identified that the number of cooling degree days and base to peak ratio (BPR) are the most important variables for predicting the magnitude of the consumption of cooling systems.

Suggested Citation

  • Khalilnejad, Arash & French, Roger H. & Abramson, Alexis R., 2021. "Evaluation of cooling setpoint setback savings in commercial buildings using electricity and exterior temperature time series data," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013657
    DOI: 10.1016/j.energy.2021.121117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arash Khalilnejad & Ahmad M Karimi & Shreyas Kamath & Rojiar Haddadian & Roger H French & Alexis R Abramson, 2020. "Automated pipeline framework for processing of large-scale building energy time series data," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-22, December.
    2. Ghahramani, Ali & Zhang, Kenan & Dutta, Kanu & Yang, Zheng & Becerik-Gerber, Burcin, 2016. "Energy savings from temperature setpoints and deadband: Quantifying the influence of building and system properties on savings," Applied Energy, Elsevier, vol. 165(C), pages 930-942.
    3. Khalilnejad, Arash & French, Roger H. & Abramson, Alexis R., 2020. "Data-driven evaluation of HVAC operation and savings in commercial buildings," Applied Energy, Elsevier, vol. 278(C).
    4. Liu, Da & Sun, Kun, 2019. "Random forest solar power forecast based on classification optimization," Energy, Elsevier, vol. 187(C).
    5. Kusiak, Andrew & Li, Mingyang & Tang, Fan, 2010. "Modeling and optimization of HVAC energy consumption," Applied Energy, Elsevier, vol. 87(10), pages 3092-3102, October.
    6. R. J. Erhardt, 2015. "Mid‐twenty‐first‐century projected trends in North American heating and cooling degree days," Environmetrics, John Wiley & Sons, Ltd., vol. 26(2), pages 133-144, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Triolo, Ryan C. & Rajagopal, Ram & Wolak, Frank A. & de Chalendar, Jacques A., 2023. "Estimating cooling demand flexibility in a district energy system using temperature set point changes from selected buildings," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatolijs Borodinecs & Arturs Palcikovskis & Andris Krumins & Deniss Zajecs & Kristina Lebedeva, 2024. "Assessment of HVAC Performance and Savings in Office Buildings Using Data-Driven Method," Clean Technol., MDPI, vol. 6(2), pages 1-12, June.
    2. Li, Guannan & Hu, Yunpeng & Chen, Huanxin & Li, Haorong & Hu, Min & Guo, Yabin & Liu, Jiangyan & Sun, Shaobo & Sun, Miao, 2017. "Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions," Applied Energy, Elsevier, vol. 185(P1), pages 846-861.
    3. Seyyed Danial Nazemi & Esmat Zaidan & Mohsen A. Jafari, 2021. "The Impact of Occupancy-Driven Models on Cooling Systems in Commercial Buildings," Energies, MDPI, vol. 14(6), pages 1-20, March.
    4. Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    5. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    6. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    7. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    8. Molina-Solana, Miguel & Ros, María & Ruiz, M. Dolores & Gómez-Romero, Juan & Martin-Bautista, M.J., 2017. "Data science for building energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 598-609.
    9. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    10. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    11. Ghahramani, Ali & Pantelic, Jovan & Lindberg, Casey & Mehl, Matthias & Srinivasan, Karthik & Gilligan, Brian & Arens, Edward, 2018. "Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems," Applied Energy, Elsevier, vol. 230(C), pages 42-51.
    12. Foulds, Chris & Powell, Jane, 2014. "Using the Homes Energy Efficiency Database as a research resource for residential insulation improvements," Energy Policy, Elsevier, vol. 69(C), pages 57-72.
    13. Jianwu Xiong & Linlin Chen & Yin Zhang, 2023. "Building Energy Saving for Indoor Cooling and Heating: Mechanism and Comparison on Temperature Difference," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    14. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    15. Alipour, Mohammadali & Aghaei, Jamshid & Norouzi, Mohammadali & Niknam, Taher & Hashemi, Sattar & Lehtonen, Matti, 2020. "A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration," Energy, Elsevier, vol. 205(C).
    16. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    17. Yu, Xinran & Ergan, Semiha & Dedemen, Gokmen, 2019. "A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang, 2022. "Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method," Energies, MDPI, vol. 15(11), pages 1-21, June.
    19. Liu, Xuefeng & Huang, Bin & Zheng, Yulan, 2023. "Control strategy for dynamic operation of multiple chillers under random load constraints," Energy, Elsevier, vol. 270(C).
    20. Romero Rodríguez, Laura & Sánchez Ramos, José & Álvarez Domínguez, Servando & Eicker, Ursula, 2018. "Contributions of heat pumps to demand response: A case study of a plus-energy dwelling," Applied Energy, Elsevier, vol. 214(C), pages 191-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.