IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v6y2024i2p41-813d1414582.html
   My bibliography  Save this article

Assessment of HVAC Performance and Savings in Office Buildings Using Data-Driven Method

Author

Listed:
  • Anatolijs Borodinecs

    (Department of Heat Engineering and Technology, Riga Technical University, Kipsalas Street 6A, LV-1048 Riga, Latvia)

  • Arturs Palcikovskis

    (Department of Heat Engineering and Technology, Riga Technical University, Kipsalas Street 6A, LV-1048 Riga, Latvia)

  • Andris Krumins

    (Lafivents Ltd., K. Ulmana Gatve 1B, LV-1004 Riga, Latvia)

  • Deniss Zajecs

    (Department of Heat Engineering and Technology, Riga Technical University, Kipsalas Street 6A, LV-1048 Riga, Latvia)

  • Kristina Lebedeva

    (Department of Heat Engineering and Technology, Riga Technical University, Kipsalas Street 6A, LV-1048 Riga, Latvia)

Abstract

Enhancing energy efficiency within the building sector is imperative to curbing energy losses, given that this sector alone contributes to over 34% of global energy consumption. Employing a building management system, along with its regular updates, presents a strategic avenue to decrease energy usage, enhance building energy efficiency, and more. Tailored control strategies, aligned with the unique characteristics and usage patterns of each building, are essential for achieving energy savings. This article presents an evaluation of HVAC system efficiency in office buildings, utilizing a data-driven approach coupled with simulations conducted in building performance simulation software. The research explores the control strategy of an office building equipped with a constant air volume HVAC system, featuring a regularly controlled air handling unit. The objective is to boost energy efficiency while striking a balance between occupant comfort and energy consumption. The findings indicate that by analyzing measured data and adjusting the configurable parameters, the energy consumption of buildings can be significantly reduced. The close monitoring of indoor parameters by building operators and making corresponding adjustments to the HVAC system can yield energy savings of up to 16%. Leveraging these insights, this paper suggests integrating data-driven and dynamic simulation methods into building management system models to optimize HVAC systems, enhance energy efficiency, and advance ambitious carbon neutrality objectives.

Suggested Citation

  • Anatolijs Borodinecs & Arturs Palcikovskis & Andris Krumins & Deniss Zajecs & Kristina Lebedeva, 2024. "Assessment of HVAC Performance and Savings in Office Buildings Using Data-Driven Method," Clean Technol., MDPI, vol. 6(2), pages 1-12, June.
  • Handle: RePEc:gam:jcltec:v:6:y:2024:i:2:p:41-813:d:1414582
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/6/2/41/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/6/2/41/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghahramani, Ali & Zhang, Kenan & Dutta, Kanu & Yang, Zheng & Becerik-Gerber, Burcin, 2016. "Energy savings from temperature setpoints and deadband: Quantifying the influence of building and system properties on savings," Applied Energy, Elsevier, vol. 165(C), pages 930-942.
    2. Khalilnejad, Arash & French, Roger H. & Abramson, Alexis R., 2020. "Data-driven evaluation of HVAC operation and savings in commercial buildings," Applied Energy, Elsevier, vol. 278(C).
    3. Zhao, Dafang & Watari, Daichi & Ozawa, Yuki & Taniguchi, Ittetsu & Suzuki, Toshihiro & Shimoda, Yoshiyuki & Onoye, Takao, 2023. "Data-driven online energy management framework for HVAC systems: An experimental study," Applied Energy, Elsevier, vol. 352(C).
    4. Zhou, Yang & Shi, Zhixiong & Shi, Zhengyu & Gao, Qing & Wu, Libo, 2019. "Disaggregating power consumption of commercial buildings based on the finite mixture model," Applied Energy, Elsevier, vol. 243(C), pages 35-46.
    5. Pang, Zhihong & O'Neill, Zheng & Chen, Yan & Zhang, Jian & Cheng, Hwakong & Dong, Bing, 2023. "Adopting occupancy-based HVAC controls in commercial building energy codes: Analysis of cost-effectiveness and decarbonization potential," Applied Energy, Elsevier, vol. 349(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalilnejad, Arash & French, Roger H. & Abramson, Alexis R., 2021. "Evaluation of cooling setpoint setback savings in commercial buildings using electricity and exterior temperature time series data," Energy, Elsevier, vol. 233(C).
    2. Khalilnejad, Arash & French, Roger H. & Abramson, Alexis R., 2020. "Data-driven evaluation of HVAC operation and savings in commercial buildings," Applied Energy, Elsevier, vol. 278(C).
    3. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    4. Shan Lin & Yu Zhang & Xuanjiang Chen & Chengzhi Pan & Xianjun Dong & Xiang Xie & Long Chen, 2025. "Review and Decision-Making Tree for Methods to Balance Indoor Environmental Comfort and Energy Conservation During Building Operation," Sustainability, MDPI, vol. 17(15), pages 1-25, August.
    5. Ghahramani, Ali & Pantelic, Jovan & Lindberg, Casey & Mehl, Matthias & Srinivasan, Karthik & Gilligan, Brian & Arens, Edward, 2018. "Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems," Applied Energy, Elsevier, vol. 230(C), pages 42-51.
    6. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).
    7. Jianwu Xiong & Linlin Chen & Yin Zhang, 2023. "Building Energy Saving for Indoor Cooling and Heating: Mechanism and Comparison on Temperature Difference," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    8. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    9. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    10. Wang, Xuezheng & Dong, Bing, 2024. "Long-term experimental evaluation and comparison of advanced controls for HVAC systems," Applied Energy, Elsevier, vol. 371(C).
    11. Romero Rodríguez, Laura & Sánchez Ramos, José & Álvarez Domínguez, Servando & Eicker, Ursula, 2018. "Contributions of heat pumps to demand response: A case study of a plus-energy dwelling," Applied Energy, Elsevier, vol. 214(C), pages 191-204.
    12. He, Xianya & Huang, Jingzhi & Liu, Zekun & Lin, Jian & Jing, Rui & Zhao, Yingru, 2023. "Topology optimization of thermally activated building system in high-rise building," Energy, Elsevier, vol. 284(C).
    13. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).
    14. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation," Energies, MDPI, vol. 14(17), pages 1-20, September.
    15. Arash Khalilnejad & Ahmad M Karimi & Shreyas Kamath & Rojiar Haddadian & Roger H French & Alexis R Abramson, 2020. "Automated pipeline framework for processing of large-scale building energy time series data," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-22, December.
    16. Katharina Boudier & Sabine Hoffmann, 2022. "Analysis of the Potential of Decentralized Heating and Cooling Systems to Improve Thermal Comfort and Reduce Energy Consumption through an Adaptive Building Controller," Energies, MDPI, vol. 15(3), pages 1-28, February.
    17. Nick Van Loy & Griet Verbeeck & Elke Knapen, 2021. "Personal Heating in Dwellings as an Innovative, Energy-Sufficient Heating Practice: A Case Study Research," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    18. Li, Guannan & Hu, Yunpeng & Chen, Huanxin & Li, Haorong & Hu, Min & Guo, Yabin & Liu, Jiangyan & Sun, Shaobo & Sun, Miao, 2017. "Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions," Applied Energy, Elsevier, vol. 185(P1), pages 846-861.
    19. Ghahramani, Ali & Castro, Guillermo & Karvigh, Simin Ahmadi & Becerik-Gerber, Burcin, 2018. "Towards unsupervised learning of thermal comfort using infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 41-49.
    20. Andolfi, Laura & Lima Baima, Renan & Burcheri, Lorenzo Matthias & Pavić, Ivan & Fridgen, Gilbert, 2025. "Sociotechnical design of building energy management systems in the public sector: Five design principles," Applied Energy, Elsevier, vol. 377(PD).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:6:y:2024:i:2:p:41-813:d:1414582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.