IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v278y2020ics0306261920310175.html
   My bibliography  Save this article

Data-driven evaluation of HVAC operation and savings in commercial buildings

Author

Listed:
  • Khalilnejad, Arash
  • French, Roger H.
  • Abramson, Alexis R.

Abstract

Commercial buildings consumed 36% of electricity, or 1.35 trillion kWh, in the United States in 2017, and almost 30% of this energy was wasted. Much of this loss can be attributed to inefficient heating ventilation and air conditioning (HVAC) systems. By improving the operational conditions of HVAC, significant savings can be achieved. However, most buildings and building equipment do not use costly sub-meters to monitor and address performance issues, and on-site auditing can be expensive and insufficient. Alternatively in this study, we propose a data-driven method to identify savings opportunities using only whole building meter data and without setting foot in the building. For this purpose, we introduced two algorithms that virtually quantify the value of a thermostat setpoint setback and HVAC rescheduling. Additionally, we developed novel methods for detecting occupancy patterns and quantifying the baseload of the HVAC operation. Using a clustering algorithm, we identified those buildings for which HVAC savings was significant and further categorized the buildings based on their potential for savings. A population study of over 432 commercial buildings demonstrated a median percentage energy savings of 1.6% from a baseload reduction and 2.1% from HVAC rescheduling. Additionally, results indicate that retail buildings have the highest potential for savings among the building types studied.

Suggested Citation

  • Khalilnejad, Arash & French, Roger H. & Abramson, Alexis R., 2020. "Data-driven evaluation of HVAC operation and savings in commercial buildings," Applied Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920310175
    DOI: 10.1016/j.apenergy.2020.115505
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920310175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghahramani, Ali & Zhang, Kenan & Dutta, Kanu & Yang, Zheng & Becerik-Gerber, Burcin, 2016. "Energy savings from temperature setpoints and deadband: Quantifying the influence of building and system properties on savings," Applied Energy, Elsevier, vol. 165(C), pages 930-942.
    2. Liang, Zheming & Bian, Desong & Zhang, Xiaohu & Shi, Di & Diao, Ruisheng & Wang, Zhiwei, 2019. "Optimal energy management for commercial buildings considering comprehensive comfort levels in a retail electricity market," Applied Energy, Elsevier, vol. 236(C), pages 916-926.
    3. Liu, Mingzhe & Heiselberg, Per, 2019. "Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics," Applied Energy, Elsevier, vol. 233, pages 764-775.
    4. Yu, Xinran & Ergan, Semiha & Dedemen, Gokmen, 2019. "A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Luo, Xuan & Hong, Tianzhen & Chen, Yixing & Piette, Mary Ann, 2017. "Electric load shape benchmarking for small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 715-725.
    6. Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.
    7. Kamal, Rajeev & Moloney, Francesca & Wickramaratne, Chatura & Narasimhan, Arunkumar & Goswami, D.Y., 2019. "Strategic control and cost optimization of thermal energy storage in buildings using EnergyPlus," Applied Energy, Elsevier, vol. 246(C), pages 77-90.
    8. Zhou, Yang & Shi, Zhixiong & Shi, Zhengyu & Gao, Qing & Wu, Libo, 2019. "Disaggregating power consumption of commercial buildings based on the finite mixture model," Applied Energy, Elsevier, vol. 243(C), pages 35-46.
    9. Krese, Gorazd & Lampret, Žiga & Butala, Vincenc & Prek, Matjaž, 2018. "Determination of a Building's balance point temperature as an energy characteristic," Energy, Elsevier, vol. 165(PB), pages 1034-1049.
    10. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Xianya & Huang, Jingzhi & Liu, Zekun & Lin, Jian & Jing, Rui & Zhao, Yingru, 2023. "Topology optimization of thermally activated building system in high-rise building," Energy, Elsevier, vol. 284(C).
    2. Khalilnejad, Arash & French, Roger H. & Abramson, Alexis R., 2021. "Evaluation of cooling setpoint setback savings in commercial buildings using electricity and exterior temperature time series data," Energy, Elsevier, vol. 233(C).
    3. Tien, Paige Wenbin & Wei, Shuangyu & Calautit, John Kaiser & Darkwa, Jo & Wood, Christopher, 2022. "Real-time monitoring of occupancy activities and window opening within buildings using an integrated deep learning-based approach for reducing energy demand," Applied Energy, Elsevier, vol. 308(C).
    4. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation," Energies, MDPI, vol. 14(17), pages 1-20, September.
    5. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    6. Arash Khalilnejad & Ahmad M Karimi & Shreyas Kamath & Rojiar Haddadian & Roger H French & Alexis R Abramson, 2020. "Automated pipeline framework for processing of large-scale building energy time series data," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-22, December.
    7. Chen, Yibo & Gao, Junxi & Yang, Jianzhong & Berardi, Umberto & Cui, Guoyou, 2023. "An hour-ahead predictive control strategy for maximizing natural ventilation in passive buildings based on weather forecasting," Applied Energy, Elsevier, vol. 333(C).
    8. Zhang, Shuyang & Zhang, Lun & Zhang, Xiaosong, 2022. "Clustering based on dynamic time warping to extract typical daily patterns from long-term operation data of a ground source heat pump system," Energy, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    2. Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
    3. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    4. Chenghao Wang & Jiyun Song & Dachuan Shi & Janet L. Reyna & Henry Horsey & Sarah Feron & Yuyu Zhou & Zutao Ouyang & Ying Li & Robert B. Jackson, 2023. "Impacts of climate change, population growth, and power sector decarbonization on urban building energy use," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Li, Wenzhuo & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Cha, Seung Hyun & Wang, Shengwei, 2020. "A novel operation approach for the energy efficiency improvement of the HVAC system in office spaces through real-time big data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    6. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
    8. João Tabanêz Patrício & Rui Amaral Lopes & Naim Majdalani & Daniel Aelenei & João Martins, 2023. "Aggregated Use of Energy Flexibility in Office Buildings," Energies, MDPI, vol. 16(2), pages 1-17, January.
    9. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    10. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    11. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    12. Thobile Zikhathile & Harrison Atagana & Joseph Bwapwa & David Sawtell, 2022. "A Review of the Impact That Healthcare Risk Waste Treatment Technologies Have on the Environment," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    13. Jennifer Date & José A. Candanedo & Andreas K. Athienitis, 2021. "A Methodology for the Enhancement of the Energy Flexibility and Contingency Response of a Building through Predictive Control of Passive and Active Storage," Energies, MDPI, vol. 14(5), pages 1-28, March.
    14. Shi, Zhengyu & Wu, Libo & Zhou, Yang, 2023. "Predicting household energy consumption in an aging society," Applied Energy, Elsevier, vol. 352(C).
    15. Younghoon Kwak & Jeonga Kang & Sun-Hye Mun & Young-Sun Jeong & Jung-Ho Huh, 2020. "Development and Application of a Flexible Modeling Approach to Reference Buildings for Energy Analysis," Energies, MDPI, vol. 13(21), pages 1-22, November.
    16. Chan, Lok Shun, 2022. "Neighbouring shading effect on photovoltaic panel system: Its implication to green building certification scheme," Renewable Energy, Elsevier, vol. 188(C), pages 476-490.
    17. Jia, Mengshuo & Huang, Shaowei & Wang, Zhiwen & Shen, Chen, 2021. "Privacy-preserving distributed parameter estimation for probability distribution of wind power forecast error," Renewable Energy, Elsevier, vol. 163(C), pages 1318-1332.
    18. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    19. Kim, Icksung & Kim, Woohyun, 2023. "Application of market-based control with thermal energy storage system for demand limiting and real-time pricing control," Energy, Elsevier, vol. 263(PA).
    20. Ghahramani, Ali & Pantelic, Jovan & Lindberg, Casey & Mehl, Matthias & Srinivasan, Karthik & Gilligan, Brian & Arens, Edward, 2018. "Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems," Applied Energy, Elsevier, vol. 230(C), pages 42-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920310175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.