IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v246y2019icp77-90.html
   My bibliography  Save this article

Strategic control and cost optimization of thermal energy storage in buildings using EnergyPlus

Author

Listed:
  • Kamal, Rajeev
  • Moloney, Francesca
  • Wickramaratne, Chatura
  • Narasimhan, Arunkumar
  • Goswami, D.Y.

Abstract

An operational strategy to optimize building operating energy costs for suppliers and consumers is an important challenge for electrical power utilities. There are various supply-side measures that utilities have to take to ensure continuous energy supply for building heating and air-conditioning. During peak energy demand, utilities are often forced to use more expensive and less efficient generation, thereby increasing the cost of energy. However, some demand-side management practices behind the consumer meter can help in meeting this challenge. One such measure is the use of thermal storage for heating, ventilation, and air-conditioning applications in commercial buildings. There is a gap of adequate knowledge of an optimal control strategy of cold storage operation in buildings adapting to applicable time of day tariffs to minimize annual energy use and annual energy cost of operation. There is also a need to use commercially available tools to avoid the use of complex mathematical models. This study demonstrates strategic controls with six operating modes for using thermal energy storage to shift peak electricity demand, using the time of day tariffs as a decision variable, and reducing operating costs, while also minimizing the size of the system. EnergyPlus was used to model a standard reference large office building for three thermal energy storage system cases: mixed chilled water storage, stratified chilled water storage, and ice storage. An annual average shifting of 25–78% of peak electricity was achieved from the simulation results. The strategy was able to achieve an annual 10–17% cost reduction for consumers using the time of use rates available from a local utility.

Suggested Citation

  • Kamal, Rajeev & Moloney, Francesca & Wickramaratne, Chatura & Narasimhan, Arunkumar & Goswami, D.Y., 2019. "Strategic control and cost optimization of thermal energy storage in buildings using EnergyPlus," Applied Energy, Elsevier, vol. 246(C), pages 77-90.
  • Handle: RePEc:eee:appene:v:246:y:2019:i:c:p:77-90
    DOI: 10.1016/j.apenergy.2019.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919306427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arce, Pablo & Medrano, Marc & Gil, Antoni & Oró, Eduard & Cabeza, Luisa F., 2011. "Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe," Applied Energy, Elsevier, vol. 88(8), pages 2764-2774, August.
    2. Lu, Yuehong & Wang, Shengwei & Sun, Yongjun & Yan, Chengchu, 2015. "Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming," Applied Energy, Elsevier, vol. 147(C), pages 49-58.
    3. Haeseldonckx, Dries & Peeters, Leen & Helsen, Lieve & D'haeseleer, William, 2007. "The impact of thermal storage on the operational behaviour of residential CHP facilities and the overall CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1227-1243, August.
    4. Andrew Izawa & Matthias Fripp, 2018. "Multi-Objective Control of Air Conditioning Improves Cost, Comfort and System Energy Balance," Energies, MDPI, vol. 11(9), pages 1-18, September.
    5. Hasnain, Syed Mahmood & Alabbadi, Naif Mohammed, 2000. "Need for thermal-storage air-conditioning in Saudi Arabia," Applied Energy, Elsevier, vol. 65(1-4), pages 153-164, April.
    6. Cui, Borui & Gao, Dian-ce & Xiao, Fu & Wang, Shengwei, 2017. "Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings," Applied Energy, Elsevier, vol. 201(C), pages 382-396.
    7. Al-Abidi, Abduljalil A. & Bin Mat, Sohif & Sopian, K. & Sulaiman, M.Y. & Lim, C.H. & Th, Abdulrahman, 2012. "Review of thermal energy storage for air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5802-5819.
    8. Patteeuw, Dieter & Bruninx, Kenneth & Arteconi, Alessia & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2015. "Integrated modeling of active demand response with electric heating systems coupled to thermal energy storage systems," Applied Energy, Elsevier, vol. 151(C), pages 306-319.
    9. Gholamibozanjani, Gohar & Tarragona, Joan & Gracia, Alvaro de & Fernández, Cèsar & Cabeza, Luisa F. & Farid, Mohammed M., 2018. "Model predictive control strategy applied to different types of building for space heating," Applied Energy, Elsevier, vol. 231(C), pages 959-971.
    10. Powell, Kody M. & Cole, Wesley J. & Ekarika, Udememfon F. & Edgar, Thomas F., 2013. "Optimal chiller loading in a district cooling system with thermal energy storage," Energy, Elsevier, vol. 50(C), pages 445-453.
    11. Jones, Byron W. & Powell, Robert, 2015. "Evaluation of distributed building thermal energy storage in conjunction with wind and solar electric power generation," Renewable Energy, Elsevier, vol. 74(C), pages 699-707.
    12. Luo, Na & Hong, Tianzhen & Li, Hui & Jia, Ruoxi & Weng, Wenguo, 2017. "Data analytics and optimization of an ice-based energy storage system for commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 459-475.
    13. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    14. Yu, F.W. & Chan, K.T., 2008. "Optimization of water-cooled chiller system with load-based speed control," Applied Energy, Elsevier, vol. 85(10), pages 931-950, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    3. Dufour, Thomas & Hoang, Hong Minh & Oignet, Jérémy & Osswald, Véronique & Clain, Pascal & Fournaison, Laurence & Delahaye, Anthony, 2017. "Impact of pressure on the dynamic behavior of CO2 hydrate slurry in a stirred tank reactor applied to cold thermal energy storage," Applied Energy, Elsevier, vol. 204(C), pages 641-652.
    4. Ruddell, Benjamin L. & Salamanca, Francisco & Mahalov, Alex, 2014. "Reducing a semiarid city’s peak electrical demand using distributed cold thermal energy storage," Applied Energy, Elsevier, vol. 134(C), pages 35-44.
    5. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    6. Fanghan Su & Zhiyuan Wang & Yue Yuan & Chengcheng Song & Kejun Zeng & Yixing Chen & Rongpeng Zhang, 2023. "Enhanced Operation of Ice Storage System for Peak Load Management in Shopping Malls across Diverse Climate Zones," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    7. Ruan, Yingjun & Liu, Qingrong & Li, Zhengwei & Wu, Jiazheng, 2016. "Optimization and analysis of Building Combined Cooling, Heating and Power (BCHP) plants with chilled ice thermal storage system," Applied Energy, Elsevier, vol. 179(C), pages 738-754.
    8. Xiaoyu Xu & Chun Chang & Xinxin Guo & Mingzhi Zhao, 2023. "Experimental and Numerical Study of the Ice Storage Process and Material Properties of Ice Storage Coils," Energies, MDPI, vol. 16(14), pages 1-18, July.
    9. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    10. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    11. Powell, Kody M. & Kim, Jong Suk & Cole, Wesley J. & Kapoor, Kriti & Mojica, Jose L. & Hedengren, John D. & Edgar, Thomas F., 2016. "Thermal energy storage to minimize cost and improve efficiency of a polygeneration district energy system in a real-time electricity market," Energy, Elsevier, vol. 113(C), pages 52-63.
    12. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    13. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    14. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu, 2023. "Globally optimal control of hybrid chilled water plants integrated with small-scale thermal energy storage for energy-efficient operation," Energy, Elsevier, vol. 262(PA).
    15. Shan, Kui & Fan, Cheng & Wang, Jiayuan, 2019. "Model predictive control for thermal energy storage assisted large central cooling systems," Energy, Elsevier, vol. 179(C), pages 916-927.
    16. Hlanze, Philani & Jiang, Zhimin & Cai, Jie & Shen, Bo, 2023. "Model-based predictive control of multi-stage air-source heat pumps integrated with phase change material-embedded ceilings," Applied Energy, Elsevier, vol. 336(C).
    17. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    18. Li, Xiwang & Wen, Jin & Malkawi, Ali, 2016. "An operation optimization and decision framework for a building cluster with distributed energy systems," Applied Energy, Elsevier, vol. 178(C), pages 98-109.
    19. Luo, Na & Hong, Tianzhen & Li, Hui & Jia, Ruoxi & Weng, Wenguo, 2017. "Data analytics and optimization of an ice-based energy storage system for commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 459-475.
    20. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:246:y:2019:i:c:p:77-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.