IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip1p846-861.html
   My bibliography  Save this article

Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions

Author

Listed:
  • Li, Guannan
  • Hu, Yunpeng
  • Chen, Huanxin
  • Li, Haorong
  • Hu, Min
  • Guo, Yabin
  • Liu, Jiangyan
  • Sun, Shaobo
  • Sun, Miao

Abstract

Variable refrigerant flow systems account for a considerable portion of energy consumption in buildings. In order to improve the energy efficiency and estimate the energy saving potentials of variable refrigerant flow systems this study proposes a data mining based method to identify and interpret the power consumption patterns and associations. Two descriptive data mining algorithms, clustering analysis and association rules mining, are used for data partitioning and association mining. The proposed method consists of four phases: data pre-processing, data partitioning, data association mining and knowledge interpretation. Experimental data collected from a tested variable refrigerant flow system in the standard psychrometer testing room are pre-processed and prepared to examine the proposed method. Three time independent influential factors: part load ratio, refrigerant charge level and cooling condition are analyzed. Results show that the method is able to help identify energy consumption patterns and extract energy consumption rules in variable refrigerant flow systems. Three distinct energy consumption patterns are identified: undercharge fault, low and high part load ratio conditions. For compressor operation frequency switch control and refrigerant undercharge patterns, the energy saving potentials could be estimated by making comparisons between energy patterns and rules in a top-down way.

Suggested Citation

  • Li, Guannan & Hu, Yunpeng & Chen, Huanxin & Li, Haorong & Hu, Min & Guo, Yabin & Liu, Jiangyan & Sun, Shaobo & Sun, Miao, 2017. "Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions," Applied Energy, Elsevier, vol. 185(P1), pages 846-861.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:846-861
    DOI: 10.1016/j.apenergy.2016.10.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916315355
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yue Ming & Wu, Jing Yi & Shiochi, Sumio, 2010. "Experimental validation of the simulation module of the water-cooled variable refrigerant flow system under cooling operation," Applied Energy, Elsevier, vol. 87(5), pages 1513-1521, May.
    2. Ghahramani, Ali & Zhang, Kenan & Dutta, Kanu & Yang, Zheng & Becerik-Gerber, Burcin, 2016. "Energy savings from temperature setpoints and deadband: Quantifying the influence of building and system properties on savings," Applied Energy, Elsevier, vol. 165(C), pages 930-942.
    3. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    4. Park, Hyo Seon & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon & Jeong, Jaewook, 2016. "Development of a new energy benchmark for improving the operational rating system of office buildings using various data-mining techniques," Applied Energy, Elsevier, vol. 173(C), pages 225-237.
    5. Zhang, Kuangyuan & Kleit, Andrew N., 2016. "Mining rate optimization considering the stockpiling: A theoretical economics and real option model," Resources Policy, Elsevier, vol. 47(C), pages 87-94.
    6. Fumo, Nelson, 2014. "A review on the basics of building energy estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 53-60.
    7. Koo, Choongwan & Hong, Taehoon, 2015. "Development of a dynamic operational rating system in energy performance certificates for existing buildings: Geostatistical approach and data-mining technique," Applied Energy, Elsevier, vol. 154(C), pages 254-270.
    8. Naji, Sareh & Shamshirband, Shahaboddin & Basser, Hossein & Keivani, Afram & Alengaram, U. Johnson & Jumaat, Mohd Zamin & Petković, Dalibor, 2016. "Application of adaptive neuro-fuzzy methodology for estimating building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1520-1528.
    9. Murray, D.M. & Liao, J. & Stankovic, L. & Stankovic, V., 2016. "Understanding usage patterns of electric kettle and energy saving potential," Applied Energy, Elsevier, vol. 171(C), pages 231-242.
    10. Du, Zhimin & Jin, Xinqiao & Fang, Xing & Fan, Bo, 2016. "A dual-benchmark based energy analysis method to evaluate control strategies for building HVAC systems," Applied Energy, Elsevier, vol. 183(C), pages 700-714.
    11. Kusiak, Andrew & Li, Mingyang & Tang, Fan, 2010. "Modeling and optimization of HVAC energy consumption," Applied Energy, Elsevier, vol. 87(10), pages 3092-3102, October.
    12. Balvís, Eduardo & Sampedro, Óscar & Zaragoza, Sonia & Paredes, Angel & Michinel, Humberto, 2016. "A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings," Applied Energy, Elsevier, vol. 177(C), pages 60-70.
    13. Yildiz, Abdullah & Ali Ersöz, Mustafa, 2015. "Determination of the economical optimum insulation thickness for VRF (variable refrigerant flow) systems," Energy, Elsevier, vol. 89(C), pages 835-844.
    14. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    15. Chou, Jui-Sheng & Ngo, Ngoc-Tri, 2016. "Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns," Applied Energy, Elsevier, vol. 177(C), pages 751-770.
    16. Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
    17. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    18. Hong, Taehoon & Koo, Choongwan & Kim, Daeho & Lee, Minhyun & Kim, Jimin, 2015. "An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches," Applied Energy, Elsevier, vol. 150(C), pages 308-322.
    19. Karunakaran, R. & Iniyan, S. & Goic, Ranko, 2010. "Energy efficient fuzzy based combined variable refrigerant volume and variable air volume air conditioning system for buildings," Applied Energy, Elsevier, vol. 87(4), pages 1158-1175, April.
    20. Ma, Jun & Cheng, Jack C.P., 2016. "Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology," Applied Energy, Elsevier, vol. 183(C), pages 182-192.
    21. Hong, Taehoon & Koo, Choongwan & Lee, Sungug, 2014. "Benchmarks as a tool for free allocation through comparison with similar projects: Focused on multi-family housing complex," Applied Energy, Elsevier, vol. 114(C), pages 663-675.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    2. Hanaa Talei & Driss Benhaddou & Carlos Gamarra & Houda Benbrahim & Mohamed Essaaidi, 2021. "Smart Building Energy Inefficiencies Detection through Time Series Analysis and Unsupervised Machine Learning," Energies, MDPI, vol. 14(19), pages 1-21, September.
    3. Fan, Cheng & Sun, Yongjun & Shan, Kui & Xiao, Fu & Wang, Jiayuan, 2018. "Discovering gradual patterns in building operations for improving building energy efficiency," Applied Energy, Elsevier, vol. 224(C), pages 116-123.
    4. Sun, Chunhua & Yuan, Lingyu & Cao, Shanshan & Xia, Guoqiang & Liu, Yanan & Wu, Xiangdong, 2023. "Identifying supply-demand mismatches in district heating system based on association rule mining," Energy, Elsevier, vol. 280(C).
    5. Elsa Chaerun Nisa & Yean-Der Kuan & Chin-Chang Lai, 2021. "Chiller Optimization Using Data Mining Based on Prediction Model, Clustering and Association Rule Mining," Energies, MDPI, vol. 14(20), pages 1-14, October.
    6. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    7. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    8. Liu, Jiangyan & Chen, Huanxin & Liu, Jiahui & Li, Zhengfei & Huang, Ronggeng & Xing, Lu & Wang, Jiangyu & Li, Guannan, 2017. "An energy performance evaluation methodology for individual office building with dynamic energy benchmarks using limited information," Applied Energy, Elsevier, vol. 206(C), pages 193-205.
    9. Zhang, Chaobo & Xue, Xue & Zhao, Yang & Zhang, Xuejun & Li, Tingting, 2019. "An improved association rule mining-based method for revealing operational problems of building heating, ventilation and air conditioning (HVAC) systems," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Fan, Cheng & Xiao, Fu & Zhao, Yang & Wang, Jiayuan, 2018. "Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data," Applied Energy, Elsevier, vol. 211(C), pages 1123-1135.
    11. Aguilar, J. & Garces-Jimenez, A. & R-Moreno, M.D. & García, Rodrigo, 2021. "A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air Conditioning Systems via Data Mining. Part II: A Detailed Case Study," Energies, MDPI, vol. 14(1), pages 1-22, December.
    13. Liu, Jiangyan & Zhang, Qing & Dong, Zhenxiang & Li, Xin & Li, Guannan & Xie, Yi & Li, Kuining, 2021. "Quantitative evaluation of the building energy performance based on short-term energy predictions," Energy, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    2. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Karimi, Hirou & Karimi, Ako & Hassanzadeh, Amir & Garcia, Davide Astiaso, 2021. "Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island," Renewable Energy, Elsevier, vol. 174(C), pages 1006-1019.
    3. Liu, Jiangyan & Wang, Jiangyu & Li, Guannan & Chen, Huanxin & Shen, Limei & Xing, Lu, 2017. "Evaluation of the energy performance of variable refrigerant flow systems using dynamic energy benchmarks based on data mining techniques," Applied Energy, Elsevier, vol. 208(C), pages 522-539.
    4. Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
    5. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    6. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Yan, Huaxia & Xia, Yudong & Deng, Shiming, 2017. "Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control," Applied Energy, Elsevier, vol. 207(C), pages 294-304.
    8. Joowook Kim & Doosam Song & Suyeon Kim & Sohyun Park & Youngjin Choi & Hyunwoo Lim, 2020. "Energy-Saving Potential of Extending Temperature Set-Points in a VRF Air-Conditioned Building," Energies, MDPI, vol. 13(9), pages 1-17, May.
    9. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    10. Li, Wenzhuo & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Cha, Seung Hyun & Wang, Shengwei, 2020. "A novel operation approach for the energy efficiency improvement of the HVAC system in office spaces through real-time big data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    11. Chou, Jui-Sheng & Ngo, Ngoc-Tri, 2016. "Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns," Applied Energy, Elsevier, vol. 177(C), pages 751-770.
    12. Adam Kula & Albert Smalcerz & Maciej Sajkowski & Zygmunt Kamiński, 2021. "Analysis of Office Rooms Energy Consumption Data in Respect to Meteorological and Direct Sun Exposure Conditions," Energies, MDPI, vol. 14(22), pages 1-20, November.
    13. Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
    14. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    15. Molina-Solana, Miguel & Ros, María & Ruiz, M. Dolores & Gómez-Romero, Juan & Martin-Bautista, M.J., 2017. "Data science for building energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 598-609.
    16. Joanna Piotrowska-Woroniak & Tomasz Szul, 2022. "Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings," Energies, MDPI, vol. 15(23), pages 1-13, November.
    17. Jing Zhao & Yu Shan, 2020. "A Fuzzy Control Strategy Using the Load Forecast for Air Conditioning System," Energies, MDPI, vol. 13(3), pages 1-17, January.
    18. Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
    19. Antonio Attanasio & Marco Savino Piscitelli & Silvia Chiusano & Alfonso Capozzoli & Tania Cerquitelli, 2019. "Towards an Automated, Fast and Interpretable Estimation Model of Heating Energy Demand: A Data-Driven Approach Exploiting Building Energy Certificates," Energies, MDPI, vol. 12(7), pages 1-25, April.
    20. Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:846-861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.