IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp522-539.html
   My bibliography  Save this article

Evaluation of the energy performance of variable refrigerant flow systems using dynamic energy benchmarks based on data mining techniques

Author

Listed:
  • Liu, Jiangyan
  • Wang, Jiangyu
  • Li, Guannan
  • Chen, Huanxin
  • Shen, Limei
  • Xing, Lu

Abstract

The variable refrigerant flow (VRF) system has extremely different energy performance at various operation conditions. Its power consumption is inconsistent even under the steady operation condition. In order to accurately evaluate the VRF system’s dynamic energy performance, this study proposed a data-mining-based method to benchmark and assess its energy uses. The correlation analysis is used for key factors selection and the interquartile range rule is employed to remove outliers of the database. In addition, the power consumption patterns are classified using decision tree (DT) method. The classification results are validated by the ANOVA analysis and post hoc test. Nine energy benchmarks are established based on the classified power consumption patterns. Moreover, an energy consumption rating system is established to provide quantitative assessment on the power consumption of the VRF system. A case study is conducted by comparatively analyzing the energy performance of the VRF system at multiple refrigerant charge fault cases. Results show that both the PLR and OT significantly affected the power consumption of the VRF system. However, the degree to which the refrigerant charge fault affects system power consumption varies with the power consumption patterns. For different patterns, the power consumptions of the VRF system were either lower, higher or similar to each other at various RCLs. Results also suggest that the energy benchmarking process provide reasonable classification criteria, and the grading process provide quantitative assessment on the energy consumption. Therefore, the proposed dynamic energy benchmarks are reliable and reasonable to evaluate the dynamic energy performance of VRF systems.

Suggested Citation

  • Liu, Jiangyan & Wang, Jiangyu & Li, Guannan & Chen, Huanxin & Shen, Limei & Xing, Lu, 2017. "Evaluation of the energy performance of variable refrigerant flow systems using dynamic energy benchmarks based on data mining techniques," Applied Energy, Elsevier, vol. 208(C), pages 522-539.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:522-539
    DOI: 10.1016/j.apenergy.2017.09.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:522-539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.