IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1273-d219424.html
   My bibliography  Save this article

Towards an Automated, Fast and Interpretable Estimation Model of Heating Energy Demand: A Data-Driven Approach Exploiting Building Energy Certificates

Author

Listed:
  • Antonio Attanasio

    (Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy
    These authors contributed equally to this work.)

  • Marco Savino Piscitelli

    (Department of Energy, Politecnico di Torino, 10129 Turin, Italy
    These authors contributed equally to this work.)

  • Silvia Chiusano

    (Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, 10129 Turin, Italy
    These authors contributed equally to this work.)

  • Alfonso Capozzoli

    (Department of Energy, Politecnico di Torino, 10129 Turin, Italy
    These authors contributed equally to this work.)

  • Tania Cerquitelli

    (Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy
    These authors contributed equally to this work.)

Abstract

Energy performance certification is an important tool for the assessment and improvement of energy efficiency in buildings. In this context, estimating building energy demand also in a quick and reliable way, for different combinations of building features, is a key issue for architects and engineers who wish, for example, to benchmark the performance of a stock of buildings or optimise a refurbishment strategy. This paper proposes a methodology for (i) the automatic estimation of the building Primary Energy Demand for space heating ( P E D h ) and (ii) the characterization of the relationship between the P E D h value and the main building features reported by Energy Performance Certificates (EPCs). The proposed methodology relies on a two-layer approach and was developed on a database of almost 90,000 EPCs of flats in the Piedmont region of Italy. First, the classification layer estimates the segment of energy demand for a flat. Then, the regression layer estimates the P E D h value for the same flat. A different regression model is built for each segment of energy demand. Four different machine learning algorithms (Decision Tree, Support Vector Machine, Random Forest, Artificial Neural Network) are used and compared in both layers. Compared to the current state-of-the-art, this paper brings a contribution in the use of data mining techniques for the asset rating of building performance, introducing a novel approach based on the use of independent data-driven models. Such configuration makes the methodology flexible and adaptable to different EPCs datasets. Experimental results demonstrate that the proposed methodology can estimate the energy demand with reasonable errors, using a small set of building features. Moreover, the use of Decision Tree algorithm enables a concise interpretation of the quantitative rules used for the estimation of the energy demand. The methodology can be useful during both designing and refurbishment of buildings, to quickly estimate the expected building energy demand and set credible targets for improving performance.

Suggested Citation

  • Antonio Attanasio & Marco Savino Piscitelli & Silvia Chiusano & Alfonso Capozzoli & Tania Cerquitelli, 2019. "Towards an Automated, Fast and Interpretable Estimation Model of Heating Energy Demand: A Data-Driven Approach Exploiting Building Energy Certificates," Energies, MDPI, vol. 12(7), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1273-:d:219424
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
    2. Chung, William & Hui, Y.V. & Lam, Y. Miu, 2006. "Benchmarking the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 83(1), pages 1-14, January.
    3. Pasichnyi, Oleksii & Wallin, Jörgen & Levihn, Fabian & Shahrokni, Hossein & Kordas, Olga, 2019. "Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?," Energy Policy, Elsevier, vol. 127(C), pages 486-499.
    4. Faustino Patiño-Cambeiro & Guillermo Bastos & Julia Armesto & Faustino Patiño-Barbeito, 2017. "Multidisciplinary Energy Assessment of Tertiary Buildings: Automated Geomatic Inspection, Building Information Modeling Reconstruction and Building Performance Simulation," Energies, MDPI, vol. 10(7), pages 1-17, July.
    5. Park, Hyo Seon & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon & Jeong, Jaewook, 2016. "Development of a new energy benchmark for improving the operational rating system of office buildings using various data-mining techniques," Applied Energy, Elsevier, vol. 173(C), pages 225-237.
    6. Melo, A.P. & Cóstola, D. & Lamberts, R. & Hensen, J.L.M., 2014. "Development of surrogate models using artificial neural network for building shell energy labelling," Energy Policy, Elsevier, vol. 69(C), pages 457-466.
    7. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2014. "A novel dynamic modeling approach for predicting building energy performance," Applied Energy, Elsevier, vol. 114(C), pages 91-103.
    8. Andaloro, Antonio P.F. & Salomone, Roberta & Ioppolo, Giuseppe & Andaloro, Laura, 2010. "Energy certification of buildings: A comparative analysis of progress towards implementation in European countries," Energy Policy, Elsevier, vol. 38(10), pages 5840-5866, October.
    9. Koo, Choongwan & Park, Sungki & Hong, Taehoon & Park, Hyo Seon, 2014. "An estimation model for the heating and cooling demand of a residential building with a different envelope design using the finite element method," Applied Energy, Elsevier, vol. 115(C), pages 205-215.
    10. Droutsa, Kalliopi G. & Kontoyiannidis, Simon & Dascalaki, Elena G. & Balaras, Constantinos A., 2016. "Mapping the energy performance of hellenic residential buildings from EPC (energy performance certificate) data," Energy, Elsevier, vol. 98(C), pages 284-295.
    11. Collins, Matthew & Curtis, John, 2018. "Bunching of residential building energy performance certificates at threshold values," Applied Energy, Elsevier, vol. 211(C), pages 662-676.
    12. Dall’O’, Giuliano & Sarto, Luca & Sanna, Nicola & Tonetti, Valeria & Ventura, Martina, 2015. "On the use of an energy certification database to create indicators for energy planning purposes: Application in northern Italy," Energy Policy, Elsevier, vol. 85(C), pages 207-217.
    13. Hong, Taehoon & Koo, Choongwan & Kim, Daeho & Lee, Minhyun & Kim, Jimin, 2015. "An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches," Applied Energy, Elsevier, vol. 150(C), pages 308-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suzana Domjan & Sašo Medved & Boštjan Černe & Ciril Arkar, 2019. "Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures," Energies, MDPI, vol. 12(16), pages 1-18, August.
    2. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    3. Lara Ramadan & Isam Shahrour & Hussein Mroueh & Fadi Hage Chehade, 2021. "Use of Machine Learning Methods for Indoor Temperature Forecasting," Future Internet, MDPI, vol. 13(10), pages 1-18, September.
    4. Benedetto Nastasi & Massimiliano Manfren & Michel Noussan, 2020. "Open Data and Energy Analytics," Energies, MDPI, vol. 13(9), pages 1-3, May.
    5. Kalliopi G. Droutsa & Constantinos A. Balaras & Spyridon Lykoudis & Simon Kontoyiannidis & Elena G. Dascalaki & Athanassios A. Argiriou, 2020. "Baselines for Energy Use and Carbon Emission Intensities in Hellenic Nonresidential Buildings," Energies, MDPI, vol. 13(8), pages 1-29, April.
    6. Tania Cerquitelli & Giovanni Malnati & Daniele Apiletti, 2019. "Exploiting Scalable Machine-Learning Distributed Frameworks to Forecast Power Consumption of Buildings," Energies, MDPI, vol. 12(15), pages 1-18, July.
    7. Sooyoun Cho & Jeehang Lee & Jumi Baek & Gi-Seok Kim & Seung-Bok Leigh, 2019. "Investigating Primary Factors Affecting Electricity Consumption in Non-Residential Buildings Using a Data-Driven Approach," Energies, MDPI, vol. 12(21), pages 1-23, October.
    8. Aleksandar S. Anđelković & Miroslav Kljajić & Dušan Macura & Vladimir Munćan & Igor Mujan & Mladen Tomić & Željko Vlaović & Borivoj Stepanov, 2021. "Building Energy Performance Certificate—A Relevant Indicator of Actual Energy Consumption and Savings?," Energies, MDPI, vol. 14(12), pages 1-19, June.
    9. Giulio Vialetto & Marco Noro, 2019. "Enhancement of a Short-Term Forecasting Method Based on Clustering and kNN: Application to an Industrial Facility Powered by a Cogenerator," Energies, MDPI, vol. 12(23), pages 1-16, November.
    10. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    11. Roberto Chiosa & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "A Data Analytics-Based Energy Information System (EIS) Tool to Perform Meter-Level Anomaly Detection and Diagnosis in Buildings," Energies, MDPI, vol. 14(1), pages 1-28, January.
    12. Marco Pau & Panagiotis Kapsalis & Zhiyu Pan & George Korbakis & Dario Pellegrino & Antonello Monti, 2022. "MATRYCS—A Big Data Architecture for Advanced Services in the Building Domain," Energies, MDPI, vol. 15(7), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalliopi G. Droutsa & Constantinos A. Balaras & Spyridon Lykoudis & Simon Kontoyiannidis & Elena G. Dascalaki & Athanassios A. Argiriou, 2020. "Baselines for Energy Use and Carbon Emission Intensities in Hellenic Nonresidential Buildings," Energies, MDPI, vol. 13(8), pages 1-29, April.
    2. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & López-González, Luis M. & Olasolo-Alonso, Pablo, 2018. "Environmental and energy impact of the EPBD in residential buildings in hot and temperate Mediterranean zones: The case of Spain," Energy, Elsevier, vol. 161(C), pages 618-634.
    3. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan, 2017. "Improvements of the operational rating system for existing residential buildings," Applied Energy, Elsevier, vol. 193(C), pages 112-124.
    4. Marta Gangolells & Miquel Casals & Jaume Ferré-Bigorra & Núria Forcada & Marcel Macarulla & Kàtia Gaspar & Blanca Tejedor, 2019. "Energy Benchmarking of Existing Office Stock in Spain: Trends and Drivers," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    5. Pasichnyi, Oleksii & Wallin, Jörgen & Levihn, Fabian & Shahrokni, Hossein & Kordas, Olga, 2019. "Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?," Energy Policy, Elsevier, vol. 127(C), pages 486-499.
    6. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok, 2016. "Development of an integrated energy benchmark for a multi-family housing complex using district heating," Applied Energy, Elsevier, vol. 179(C), pages 1048-1061.
    7. Aleksandar S. Anđelković & Miroslav Kljajić & Dušan Macura & Vladimir Munćan & Igor Mujan & Mladen Tomić & Željko Vlaović & Borivoj Stepanov, 2021. "Building Energy Performance Certificate—A Relevant Indicator of Actual Energy Consumption and Savings?," Energies, MDPI, vol. 14(12), pages 1-19, June.
    8. Li, Y. & Kubicki, S. & Guerriero, A. & Rezgui, Y., 2019. "Review of building energy performance certification schemes towards future improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Fabbri, Kristian & Marinosci, Cosimo, 2018. "EPBD independent control system for energy performance certification: The Emilia-Romagna Region (Italy) pioneering experience," Energy, Elsevier, vol. 165(PB), pages 563-576.
    10. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Hettinga, Sanne & van ’t Veer, Rein & Boter, Jaap, 2023. "Large scale energy labelling with models: The EU TABULA model versus machine learning with open data," Energy, Elsevier, vol. 264(C).
    12. Pagliaro, Francesca & Hugony, Francesca & Zanghirella, Fabio & Basili, Rossano & Misceo, Monica & Colasuonno, Luca & Del Fatto, Vincenzo, 2021. "Assessing building energy performance and energy policy impact through the combined analysis of EPC data – The Italian case study of SIAPE," Energy Policy, Elsevier, vol. 159(C).
    13. Hardy, A. & Glew, D., 2019. "An analysis of errors in the Energy Performance certificate database," Energy Policy, Elsevier, vol. 129(C), pages 1168-1178.
    14. Li, Zhengwei & Han, Yanmin & Xu, Peng, 2014. "Methods for benchmarking building energy consumption against its past or intended performance: An overview," Applied Energy, Elsevier, vol. 124(C), pages 325-334.
    15. Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
    16. Rastogi, Ankush & Choi, Jun-Ki & Hong, Taehoon & Lee, Minhyun, 2017. "Impact of different LEED versions for green building certification and energy efficiency rating system: A Multifamily Midrise case study," Applied Energy, Elsevier, vol. 205(C), pages 732-740.
    17. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan, 2017. "Development of a prediction model for the cost saving potentials in implementing the building energy efficiency rating certification," Applied Energy, Elsevier, vol. 189(C), pages 257-270.
    18. Hong, Taehoon & Koo, Choongwan & Kim, Daeho & Lee, Minhyun & Kim, Jimin, 2015. "An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches," Applied Energy, Elsevier, vol. 150(C), pages 308-322.
    19. Attia, Shady & Shadmanfar, Niloufar & Ricci, Federico, 2020. "Developing two benchmark models for nearly zero energy schools," Applied Energy, Elsevier, vol. 263(C).
    20. Wiethe, Christian & Wenninger, Simon, 2023. "The influence of building energy performance prediction accuracy on retrofit rates," Energy Policy, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1273-:d:219424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.