IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1818-d1627819.html
   My bibliography  Save this article

Analyzing the Carbon Performance Gap and Thermal Energy Performance Gap of School Buildings in Osijek-Baranja County, Croatia

Author

Listed:
  • Hana Begić Juričić

    (Faculty of Civil Engineering and Architecture Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia)

  • Hrvoje Krstić

    (Faculty of Civil Engineering and Architecture Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia)

  • Mihaela Domazetović

    (Faculty of Civil Engineering and Architecture Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia)

Abstract

This study examines the Carbon Performance Gap (CPG) and Energy Performance Gap (EPG) of school buildings in Osijek-Baranja County in Croatia. The variance between the predicted energy efficiency of a building, as indicated by the energy performance certificate (EPC), and its actual performance in terms of energy consumption, is often referred to as the EPG while the variance between the predicted carbon emission of a building from the EPC and its actual emission is referred to as CPG. This study aims to determine the extent of CPG and EPG between actual energy consumption/carbon emission and the calculated, which is presented in EPCs of school buildings. The average EPG among the analyzed schools was found to be 71.73% while the average CPG was found to be 78.77%. The analysis also revealed a substantial average annual difference in heating costs attributable to the EPG. By addressing EPG and CPG while optimizing energy usage, educational institutions can achieve substantial cost savings and contribute significantly to sustainability goals.

Suggested Citation

  • Hana Begić Juričić & Hrvoje Krstić & Mihaela Domazetović, 2025. "Analyzing the Carbon Performance Gap and Thermal Energy Performance Gap of School Buildings in Osijek-Baranja County, Croatia," Energies, MDPI, vol. 18(7), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1818-:d:1627819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Majcen, Daša & Itard, Laure & Visscher, Henk, 2013. "Actual and theoretical gas consumption in Dutch dwellings: What causes the differences?," Energy Policy, Elsevier, vol. 61(C), pages 460-471.
    2. Palladino, Domenico, 2023. "Energy performance gap of the Italian residential building stock: Parametric energy simulations for theoretical deviation assessment from standard conditions," Applied Energy, Elsevier, vol. 345(C).
    3. Cozza, Stefano & Chambers, Jonathan & Patel, Martin K., 2020. "Measuring the thermal energy performance gap of labelled residential buildings in Switzerland," Energy Policy, Elsevier, vol. 137(C).
    4. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    5. Young Ki Kim & Lindita Bande & Kheira Anissa Tabet Aoul & Hasim Altan, 2020. "Dynamic Energy Performance Gap Analysis of a University Building: Case Studies at UAE University Campus, UAE," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    6. Aleksandar S. Anđelković & Miroslav Kljajić & Dušan Macura & Vladimir Munćan & Igor Mujan & Mladen Tomić & Željko Vlaović & Borivoj Stepanov, 2021. "Building Energy Performance Certificate—A Relevant Indicator of Actual Energy Consumption and Savings?," Energies, MDPI, vol. 14(12), pages 1-19, June.
    7. Andaloro, Antonio P.F. & Salomone, Roberta & Ioppolo, Giuseppe & Andaloro, Laura, 2010. "Energy certification of buildings: A comparative analysis of progress towards implementation in European countries," Energy Policy, Elsevier, vol. 38(10), pages 5840-5866, October.
    8. Droutsa, Kalliopi G. & Kontoyiannidis, Simon & Dascalaki, Elena G. & Balaras, Constantinos A., 2016. "Mapping the energy performance of hellenic residential buildings from EPC (energy performance certificate) data," Energy, Elsevier, vol. 98(C), pages 284-295.
    9. Gupta, Rajat & Kotopouleas, Alkis, 2018. "Magnitude and extent of building fabric thermal performance gap in UK low energy housing," Applied Energy, Elsevier, vol. 222(C), pages 673-686.
    10. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    11. Luca Evangelisti & Claudia Guattari & Paola Gori & Roberto De Lieto Vollaro, 2015. "In Situ Thermal Transmittance Measurements for Investigating Differences between Wall Models and Actual Building Performance," Sustainability, MDPI, vol. 7(8), pages 1-11, August.
    12. Balaras, Constantinos A. & Dascalaki, Elena G. & Droutsa, Kalliopi G. & Kontoyiannidis, Simon, 2016. "Empirical assessment of calculated and actual heating energy use in Hellenic residential buildings," Applied Energy, Elsevier, vol. 164(C), pages 115-132.
    13. Majcen, D. & Itard, L.C.M. & Visscher, H., 2013. "Theoretical vs. actual energy consumption of labelled dwellings in the Netherlands: Discrepancies and policy implications," Energy Policy, Elsevier, vol. 54(C), pages 125-136.
    14. Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
    15. Hårsman, Björn & Daghbashyan, Zara & Chaudhary, Parth, 2016. "On the Quality and Impact of Residential Energy Performance Certificates," Working Paper Series in Economics and Institutions of Innovation 429, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Yefei & Yu, Cong & Pan, Wei, 2024. "Systematic examination of energy performance gap in low-energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Pasichnyi, Oleksii & Wallin, Jörgen & Levihn, Fabian & Shahrokni, Hossein & Kordas, Olga, 2019. "Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?," Energy Policy, Elsevier, vol. 127(C), pages 486-499.
    3. Palladino, Domenico, 2023. "Energy performance gap of the Italian residential building stock: Parametric energy simulations for theoretical deviation assessment from standard conditions," Applied Energy, Elsevier, vol. 345(C).
    4. Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
    5. Stijn Van de Putte & Marijke Steeman & Arnold Janssens, 2025. "The Building Energy Performance Gap in Multifamily Buildings: A Detailed Case Study Analysis of the Energy Demand and Collective Heating System," Sustainability, MDPI, vol. 17(1), pages 1-39, January.
    6. Shiva Amirkhani & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook & Hooman Tahayori & Hexin Zhang, 2021. "Uncertainties in Non-Domestic Energy Performance Certificate Generating in the UK," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    7. Heesen, Florian & Madlener, Reinhard, 2016. "Consumer Behavior in Energy-Efficient Homes: The Limited Merits of Energy Performance Ratings as Benchmarks," FCN Working Papers 17/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    8. Xia Wang & Jiachen Yuan & Kairui You & Xianrui Ma & Zhaoji Li, 2023. "Using Real Building Energy Use Data to Explain the Energy Performance Gap of Energy-Efficient Residential Buildings: A Case Study from the Hot Summer and Cold Winter Zone in China," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    9. Aleksandar S. Anđelković & Miroslav Kljajić & Dušan Macura & Vladimir Munćan & Igor Mujan & Mladen Tomić & Željko Vlaović & Borivoj Stepanov, 2021. "Building Energy Performance Certificate—A Relevant Indicator of Actual Energy Consumption and Savings?," Energies, MDPI, vol. 14(12), pages 1-19, June.
    10. Didem Gunes Yilmaz & Fatma Cesur, 2023. "A Study for the Improvement of the Energy Performance Certificate (EPC) System in Turkey," Sustainability, MDPI, vol. 15(19), pages 1-24, September.
    11. Cozza, Stefano & Chambers, Jonathan & Patel, Martin K., 2020. "Measuring the thermal energy performance gap of labelled residential buildings in Switzerland," Energy Policy, Elsevier, vol. 137(C).
    12. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    13. Filippidou, Faidra & Nieboer, Nico & Visscher, Henk, 2017. "Are we moving fast enough? The energy renovation rate of the Dutch non-profit housing using the national energy labelling database," Energy Policy, Elsevier, vol. 109(C), pages 488-498.
    14. Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Zhong, Shengyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Deng, Shuai & Li, Yang & Hussain, Sajjad & Wang, Xiaoyuan & Zhu, Jiebei, 2021. "Quantitative analysis of information interaction in building energy systems based on mutual information," Energy, Elsevier, vol. 214(C).
    16. Pierryves Padey & Kyriaki Goulouti & Guy Wagner & Blaise Périsset & Sébastien Lasvaux, 2021. "Understanding the Reasons behind the Energy Performance Gap of an Energy-Efficient Building, through a Probabilistic Approach and On-Site Measurements," Energies, MDPI, vol. 14(19), pages 1-15, September.
    17. Hettinga, Sanne & van ’t Veer, Rein & Boter, Jaap, 2023. "Large scale energy labelling with models: The EU TABULA model versus machine learning with open data," Energy, Elsevier, vol. 264(C).
    18. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    19. Antonio Attanasio & Marco Savino Piscitelli & Silvia Chiusano & Alfonso Capozzoli & Tania Cerquitelli, 2019. "Towards an Automated, Fast and Interpretable Estimation Model of Heating Energy Demand: A Data-Driven Approach Exploiting Building Energy Certificates," Energies, MDPI, vol. 12(7), pages 1-25, April.
    20. Duk Joon Park & Ki Hyung Yu & Yong Sang Yoon & Kee Han Kim & Sun Sook Kim, 2015. "Analysis of a Building Energy Efficiency Certification System in Korea," Sustainability, MDPI, vol. 7(12), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1818-:d:1627819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.