IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v222y2018icp673-686.html
   My bibliography  Save this article

Magnitude and extent of building fabric thermal performance gap in UK low energy housing

Author

Listed:
  • Gupta, Rajat
  • Kotopouleas, Alkis

Abstract

This paper presents new evidence from a nationwide cross-project meta-study investigating the magnitude and extent of the difference between designed and measured thermal performance of the building fabric of 188 low energy dwellings in the UK. The dataset was drawn from the UK Government’s national Building Performance Evaluation programme, and comprises 50 Passivhaus (PH) and 138 non-Passivhaus (NPH) dwellings, covering different built forms and construction systems. The difference between designed and measured values of air permeability (AP), external wall/roof thermal transmittance (U-value) and whole house heat loss were statistically analysed, along with a review of thermal imaging data to explain any discrepancies. The results showed that fabric thermal performance gap was widespread especially in terms of AP, although the magnitude of underperformance was much less in PH dwellings. While measured AP had good correlation with measured space heating energy for PH dwellings, there was no relationship between the two for NPH dwellings. The regression analysis indicated that for every 1 m3/h/m2 reduction in designed air permeability, the gap increased by 0.8 m3/h/m2@50 Pa. Monte Carlo analysis showed that likelihood of AP gap was 78% in NPH dwellings designed to 5 m3/h/m2@50 Pa or lower. The study provides useful evidence for improving the fabric thermal performance of new housing through in-situ testing.

Suggested Citation

  • Gupta, Rajat & Kotopouleas, Alkis, 2018. "Magnitude and extent of building fabric thermal performance gap in UK low energy housing," Applied Energy, Elsevier, vol. 222(C), pages 673-686.
  • Handle: RePEc:eee:appene:v:222:y:2018:i:c:p:673-686
    DOI: 10.1016/j.apenergy.2018.03.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918304343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schleich, Joachim & Hillenbrand, Thomas, 2009. "Determinants of residential water demand in Germany," Ecological Economics, Elsevier, vol. 68(6), pages 1756-1769, April.
    2. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    3. Scott Kelly & Michael Pollitt & Doug Crawford-Brown, 2011. "Building performance evaluation and certification in the UK: a critical review of SAP?," Working Papers EPRG 1219, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Alencastro, João & Fuertes, Alba & de Wilde, Pieter, 2018. "The relationship between quality defects and the thermal performance of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 883-894.
    5. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    6. Fuentes, E. & Arce, L. & Salom, J., 2018. "A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1530-1547.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moradi, Amir & Kavgic, Miroslava & Costanzo, Vincenzo & Evola, Gianpiero, 2023. "Impact of typical and actual weather years on the energy simulation of buildings with different construction features and under different climates," Energy, Elsevier, vol. 270(C).
    2. Ahmad Taki & Anastasiya Zakharanka, 2023. "The Effect of Degradation on Cold Climate Building Energy Performance: A Comparison with Hot Climate Buildings," Sustainability, MDPI, vol. 15(8), pages 1-38, April.
    3. Palladino, Domenico, 2023. "Energy performance gap of the Italian residential building stock: Parametric energy simulations for theoretical deviation assessment from standard conditions," Applied Energy, Elsevier, vol. 345(C).
    4. Ahmad Taki & Anastasiya Zakharanka, 2023. "The Impact of Degradation on a Building’s Energy Performance in Hot-Humid Climates," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    5. Rajat Gupta & Matt Gregg, 2021. "Integrated Testing of Building Fabric Thermal Performance for Calibration of Energy Models of Three Low-Energy Dwellings in the UK," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
    6. Francesco Zaccaro & John Richard Littlewood & Carolyn Hayles, 2021. "An Analysis of Repeating Thermal Bridges from Timber Frame Fraction in Closed Panel Timber Frame Walls: A Case Study from Wales, UK," Energies, MDPI, vol. 14(4), pages 1-17, February.
    7. Ling-Chin, J. & Taylor, W. & Davidson, P. & Reay, D. & Nazi, W.I. & Tassou, S. & Roskilly, A.P., 2019. "UK building thermal performance from industrial and governmental perspectives," Applied Energy, Elsevier, vol. 237(C), pages 270-282.
    8. Kheira Anissa Tabet Aoul & Rahma Hagi & Rahma Abdelghani & Monaya Syam & Boshra Akhozheya, 2021. "Building Envelope Thermal Defects in Existing and Under-Construction Housing in the UAE; Infrared Thermography Diagnosis and Qualitative Impacts Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    9. Li, X. & Arbabi, H. & Bennett, G. & Oreszczyn, T. & Densley Tingley, D., 2022. "Net zero by 2050: Investigating carbon-budget compliant retrofit measures for the English housing stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papafragkou, Anastasios & Ghosh, Siddhartha & James, Patrick A.B. & Rogers, Alex & Bahaj, AbuBakr S., 2014. "A simple, scalable and low-cost method to generate thermal diagnostics of a domestic building," Applied Energy, Elsevier, vol. 134(C), pages 519-530.
    2. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan, 2017. "Development of a prediction model for the cost saving potentials in implementing the building energy efficiency rating certification," Applied Energy, Elsevier, vol. 189(C), pages 257-270.
    3. Hong, Taehoon & Koo, Choongwan & Kim, Daeho & Lee, Minhyun & Kim, Jimin, 2015. "An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches," Applied Energy, Elsevier, vol. 150(C), pages 308-322.
    4. Xie, Y. & Gilmour, M.S. & Yuan, Y. & Jin, H. & Wu, H., 2017. "A review on house design with energy saving system in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 29-52.
    5. Hope, Alexander John & Booth, Alexander, 2014. "Attitudes and behaviours of private sector landlords towards the energy efficiency of tenanted homes," Energy Policy, Elsevier, vol. 75(C), pages 369-378.
    6. Li, Y. & Kubicki, S. & Guerriero, A. & Rezgui, Y., 2019. "Review of building energy performance certification schemes towards future improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. van den Brom, Paula & Hansen, Anders Rhiger & Gram-Hanssen, Kirsten & Meijer, Arjen & Visscher, Henk, 2019. "Variances in residential heating consumption – Importance of building characteristics and occupants analysed by movers and stayers," Applied Energy, Elsevier, vol. 250(C), pages 713-728.
    8. Ray Pritchard & Scott Kelly, 2017. "Realising Operational Energy Performance in Non-Domestic Buildings: Lessons Learnt from Initiatives Applied in Cambridge," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
    9. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
    10. Christopher Müller, 2015. "Welfare Effects of Water Pricing in Germany," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-25, December.
    11. Marie-Estelle Binet & Fabrizio Carlevaro & Michel Paul, 2014. "Estimation of Residential Water Demand with Imperfect Price Perception," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(4), pages 561-581, December.
    12. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    13. Habtamu Tkubet Ebuy & Hind Bril El Haouzi & Riad Benelmir & Remi Pannequin, 2023. "Occupant Behavior Impact on Building Sustainability Performance: A Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    14. Simona FRONE, 2012. "Issues On The Role Of Efficient Water Pricing For Sustainable Water Management," Romanian Journal of Economics, Institute of National Economy, vol. 34(1(43)), pages 84-111, June.
    15. Christine Eon & Jessica K. Breadsell & Joshua Byrne & Gregory M. Morrison, 2020. "The Discrepancy between As-Built and As-Designed in Energy Efficient Buildings: A Rapid Review," Sustainability, MDPI, vol. 12(16), pages 1-28, August.
    16. Anti Hamburg & Targo Kalamees, 2018. "The Influence of Energy Renovation on the Change of Indoor Temperature and Energy Use," Energies, MDPI, vol. 11(11), pages 1-15, November.
    17. Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.
    18. Alencastro, João & Fuertes, Alba & de Wilde, Pieter, 2018. "The relationship between quality defects and the thermal performance of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 883-894.
    19. Prasanna, Ashreeta & Dorer, Viktor & Vetterli, Nadège, 2017. "Optimisation of a district energy system with a low temperature network," Energy, Elsevier, vol. 137(C), pages 632-648.
    20. Maria Carmela Aprile & Damiano Fiorillo, 2016. "Water Conservation Behavior and Environmental Concerns," Discussion Papers 6_2016, CRISEI, University of Naples "Parthenope", Italy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:222:y:2018:i:c:p:673-686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.