Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.05.125
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pollock, Daniel T. & Yang, Zehao & Wen, John T., 2015. "Dryout avoidance control for multi-evaporator vapor compression cycle cooling," Applied Energy, Elsevier, vol. 160(C), pages 266-285.
- Li, Yue Ming & Wu, Jing Yi & Shiochi, Sumio, 2010. "Experimental validation of the simulation module of the water-cooled variable refrigerant flow system under cooling operation," Applied Energy, Elsevier, vol. 87(5), pages 1513-1521, May.
- Meissner, José W. & Abadie, Marc O. & Moura, Luís M. & Mendonça, Kátia C. & Mendes, Nathan, 2014. "Performance curves of room air conditioners for building energy simulation tools," Applied Energy, Elsevier, vol. 129(C), pages 243-252.
- Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
- Chowdhury, Ashfaque Ahmed & Rasul, M.G. & Khan, M.M.K., 2008. "Thermal-comfort analysis and simulation for various low-energy cooling-technologies applied to an office building in a subtropical climate," Applied Energy, Elsevier, vol. 85(6), pages 449-462, June.
- Li, Ning & Xia, Liang & Shiming, Deng & Xu, Xiangguo & Chan, Ming-Yin, 2012. "Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network," Applied Energy, Elsevier, vol. 91(1), pages 290-300.
- Karunakaran, R. & Iniyan, S. & Goic, Ranko, 2010. "Energy efficient fuzzy based combined variable refrigerant volume and variable air volume air conditioning system for buildings," Applied Energy, Elsevier, vol. 87(4), pages 1158-1175, April.
- Fan, Hongming & Shao, Shuangquan & Tian, Changqing, 2014. "Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control," Applied Energy, Elsevier, vol. 113(C), pages 883-890.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Zi-Yang & Zhang, Chun-Lu & Xiao, Fu, 2020. "Energy-efficient decentralized control method with enhanced robustness for multi-evaporator air conditioning systems," Applied Energy, Elsevier, vol. 279(C).
- Jianwu Xiong & Linlin Chen & Yin Zhang, 2023. "Building Energy Saving for Indoor Cooling and Heating: Mechanism and Comparison on Temperature Difference," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
- Chen, Yi & Yan, Huaxia & Yang, Hongxing, 2018. "Comparative study of on-off control and novel high-low control of regenerative indirect evaporative cooler (RIEC)," Applied Energy, Elsevier, vol. 225(C), pages 233-243.
- Lim, Dae Kyu & Ahn, Byoung Ha & Jeong, Ji Hwan, 2018. "Method to control an air conditioner by directly measuring the relative humidity of indoor air to improve the comfort and energy efficiency," Applied Energy, Elsevier, vol. 215(C), pages 290-299.
- Mei, Jun & Xia, Xiaohua & Song, Mengjie, 2018. "An autonomous hierarchical control for improving indoor comfort and energy efficiency of a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 221(C), pages 450-463.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Guannan & Hu, Yunpeng & Chen, Huanxin & Li, Haorong & Hu, Min & Guo, Yabin & Liu, Jiangyan & Sun, Shaobo & Sun, Miao, 2017. "Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions," Applied Energy, Elsevier, vol. 185(P1), pages 846-861.
- Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
- Kang, Won Hee & Lee, Jong Man & Yeon, Sang Hun & Park, Min Kyeong & Kim, Chul Ho & Lee, Je Hyeon & Moon, Jin Woo & Lee, Kwang Ho, 2020. "Modeling, calibration, and sensitivity analysis of direct expansion AHU-Water source VRF system," Energy, Elsevier, vol. 199(C).
- Gilani, Hooman Azad & Hoseinzadeh, Siamak & Karimi, Hirou & Karimi, Ako & Hassanzadeh, Amir & Garcia, Davide Astiaso, 2021. "Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island," Renewable Energy, Elsevier, vol. 174(C), pages 1006-1019.
- Chen, Wenjing & Chan, Ming-yin & Weng, Wenbing & Yan, Huaxia & Deng, Shiming, 2018. "An experimental study on the operational characteristics of a direct expansion based enhanced dehumidification air conditioning system," Applied Energy, Elsevier, vol. 225(C), pages 922-933.
- Sehar, Fakeha & Pipattanasomporn, Manisa & Rahman, Saifur, 2016. "A peak-load reduction computing tool sensitive to commercial building environmental preferences," Applied Energy, Elsevier, vol. 161(C), pages 279-289.
- Tzivanidis, C. & Antonopoulos, K.A. & Gioti, F., 2011. "Numerical simulation of cooling energy consumption in connection with thermostat operation mode and comfort requirements for the Athens buildings," Applied Energy, Elsevier, vol. 88(8), pages 2871-2884, August.
- Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
- Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
- Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
- Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
- Luo, Yimo & Chen, Yi & Yang, Hongxing & Wang, Yuanhao, 2017. "Study on an internally-cooled liquid desiccant dehumidifier with CFD model," Applied Energy, Elsevier, vol. 194(C), pages 399-409.
- Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
- Ángel M. Costa & Rebeca Bouzón & Diego Vergara & José A. Orosa, 2019. "Eco-friendly Pressure Drop Dehumidifier: An Experimental and Numerical Analysis," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
- Duan, Zhongdi & Ren, Tao & Ding, Guoliang & Chen, Jie & Mi, Xiaoguang, 2017. "Liquid-migration based model for predicting the thermal performance of spiral wound heat exchanger for floating LNG," Applied Energy, Elsevier, vol. 206(C), pages 972-982.
- Jing Zhao & Yu Shan, 2020. "A Fuzzy Control Strategy Using the Load Forecast for Air Conditioning System," Energies, MDPI, vol. 13(3), pages 1-17, January.
- Taleghani, Mohammad & Tenpierik, Martin & van den Dobbelsteen, Andy, 2014. "Energy performance and thermal comfort of courtyard/atrium dwellings in the Netherlands in the light of climate change," Renewable Energy, Elsevier, vol. 63(C), pages 486-497.
- Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
- Shu Su & Xiaodong Li & Borong Lin & Hongyang Li & Jingfeng Yuan, 2019. "A Comparison of the Environmental Performance of Cooling and Heating among Different Household Types in China’s Hot Summer–Cold Winter Zone," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
- Song, Chunhe & Jing, Wei & Zeng, Peng & Rosenberg, Catherine, 2017. "An analysis on the energy consumption of circulating pumps of residential swimming pools for peak load management," Applied Energy, Elsevier, vol. 195(C), pages 1-12.
More about this item
Keywords
TEAC system; Simulation; Humidity control; Controllability tests;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:207:y:2017:i:c:p:294-304. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.