IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5724-d277077.html
   My bibliography  Save this article

A Comparison of the Environmental Performance of Cooling and Heating among Different Household Types in China’s Hot Summer–Cold Winter Zone

Author

Listed:
  • Shu Su

    (Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing 211189, China
    Engineering Research Center of Building Equipment, Energy, and Environment, Ministry of Education, Nanjing 210096, China)

  • Xiaodong Li

    (Department of Construction Management, School of Civil Engineering, Tsinghua University, Beijing 100084, China)

  • Borong Lin

    (Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China)

  • Hongyang Li

    (School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China)

  • Jingfeng Yuan

    (Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing 211189, China)

Abstract

Cooling and heating consume a large amount of energy during the operation of residential buildings in the hot summer–cold winter zone. It causes serious ecological damage and negatively affects natural resources. Occupant usage behaviors of cooling and heating systems are driven by various factors, and correlations between the driving factors and corresponding environmental impacts (EIs) are not well quantified. This study focuses on two occupant-related driving factors: household size and age composition, and combines a questionnaire survey, an energy simulation, and an EIs assessment into an integrated model. A case study is conducted in Jiangsu, China, to demonstrate the model. Nearly 1800 samples are collected from a large sample questionnaire survey and then classified into nine household types according to their household sizes and age compositions. The EIs due to cooling and heating of different household types in a typical year are then assessed and compared. The assessment results show that different household types have various environmental performance. Households with larger size, elderly people, and children have higher EIs. This newly established model is applicable and builds a bridge between driving factors and the environmental performance of cooling and heating. These assessment results will help better understand the role of household type.

Suggested Citation

  • Shu Su & Xiaodong Li & Borong Lin & Hongyang Li & Jingfeng Yuan, 2019. "A Comparison of the Environmental Performance of Cooling and Heating among Different Household Types in China’s Hot Summer–Cold Winter Zone," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5724-:d:277077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Delzendeh, Elham & Wu, Song & Lee, Angela & Zhou, Ying, 2017. "The impact of occupants’ behaviours on building energy analysis: A research review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1061-1071.
    2. Liao, Huei-Chu & Chang, Tsai-Feng, 2002. "Space-heating and water-heating energy demands of the aged in the US," Energy Economics, Elsevier, vol. 24(3), pages 267-284, May.
    3. Xu, Luyi & Liu, Junjie & Pei, Jingjing & Han, Xu, 2013. "Building energy saving potential in Hot Summer and Cold Winter (HSCW) Zone, China—Influence of building energy efficiency standards and implications," Energy Policy, Elsevier, vol. 57(C), pages 253-262.
    4. Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianmarco Fajilla & Emiliano Borri & Marilena De Simone & Luisa F. Cabeza & Luís Bragança, 2021. "Effect of Climate Change and Occupant Behaviour on the Environmental Impact of the Heating and Cooling Systems of a Real Apartment. A Parametric Study through Life Cycle Assessment," Energies, MDPI, vol. 14(24), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xia & Ding, Chao & Zhou, Mao & Cai, Weiguang & Ma, Xianrui & Yuan, Jiachen, 2023. "Assessment of space heating consumption efficiency based on a household survey in the hot summer and cold winter climate zone in China," Energy, Elsevier, vol. 274(C).
    2. Wang, Xia & Fang, Yuan & Cai, Weiguang & Ding, Chao & Xie, Yupei, 2022. "Heating demand with heterogeneity in residential households in the hot summer and cold winter climate zone in China -A quantile regression approach," Energy, Elsevier, vol. 247(C).
    3. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    4. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    5. Damette, Olivier & Delacote, Philippe & Lo, Gaye Del, 2018. "Households energy consumption and transition toward cleaner energy sources," Energy Policy, Elsevier, vol. 113(C), pages 751-764.
    6. Hu, Shan & Yan, Da & Cui, Ying & Guo, Siyue, 2016. "Urban residential heating in hot summer and cold winter zones of China—Status, modeling, and scenarios to 2030," Energy Policy, Elsevier, vol. 92(C), pages 158-170.
    7. Véronique Vasseur & Anne-Francoise Marique, 2019. "Households’ Willingness to Adopt Technological and Behavioral Energy Savings Measures: An Empirical Study in The Netherlands," Energies, MDPI, vol. 12(22), pages 1-25, November.
    8. Georges Atallah & Faris Tarlochan, 2021. "Comparison between Variable and Constant Refrigerant Flow Air Conditioning Systems in Arid Climate: Life Cycle Cost Analysis and Energy Savings," Sustainability, MDPI, vol. 13(18), pages 1-13, September.
    9. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    10. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    11. Mehdi Nasrabadi & Donal Finn, 2024. "Performance Assessment of an Integrated Low-Approach Low-Temperature Open Cooling Tower with Radiant Cooling and Displacement Ventilation for Space Conditioning in Temperate Climates," Energies, MDPI, vol. 17(15), pages 1-30, July.
    12. Yan, Huaxia & Xia, Yudong & Deng, Shiming, 2017. "Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control," Applied Energy, Elsevier, vol. 207(C), pages 294-304.
    13. Obinna, Uchechi & Joore, Peter & Wauben, Linda & Reinders, Angele, 2017. "Comparison of two residential Smart Grid pilots in the Netherlands and in the USA, focusing on energy performance and user experiences," Applied Energy, Elsevier, vol. 191(C), pages 264-275.
    14. Tanaka, Takuro & Mizutani, Fumitoshi, 2023. "Determinants of the adoption of energy efficient water heaters in the residential sector: Evidence from a survey in Japan," Energy Policy, Elsevier, vol. 180(C).
    15. Lin, Haiyang & Wang, Qinxing & Wang, Yu & Liu, Yiling & Sun, Qie & Wennersten, Ronald, 2017. "The energy-saving potential of an office under different pricing mechanisms – Application of an agent-based model," Applied Energy, Elsevier, vol. 202(C), pages 248-258.
    16. Ebru Ergöz Karahan & Özgür Göçer & Kenan Göçer & Didem Boyacıoğlu, 2021. "An Investigation of Occupant Energy-Saving Behavior in Vernacular Houses of Behramkale (Assos)," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    17. Nicholas Rivers and Leslie Shiell, 2016. "Free-Riding on Energy Efficiency Subsidies: the Case of Natural Gas Furnaces in Canada," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    18. Idahosa, Love Odion & Akotey, Joseph Oscar, 2021. "A social constructionist approach to managing HVAC energy consumption using social norms – A randomised field experiment," Energy Policy, Elsevier, vol. 154(C).
    19. Stylianos K. Karatzas & Athanasios P. Chassiakos & Anastasios I. Karameros, 2020. "Business Processes and Comfort Demand for Energy Flexibility Analysis in Buildings," Energies, MDPI, vol. 13(24), pages 1-23, December.
    20. Rehdanz, Katrin, 2007. "Determinants of residential space heating expenditures in Germany," Energy Economics, Elsevier, vol. 29(2), pages 167-182, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5724-:d:277077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.