IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p953-d141453.html
   My bibliography  Save this article

The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art

Author

Listed:
  • Antonio Paone

    (University of Applied Sciences and Arts Western Switzerland—Fribourg, HEIA-FR—Institute for Applied Research in Energy Systems, Bd. de Pérolles 80, CP32, CH-1705 Fribourg, Switzerland)

  • Jean-Philippe Bacher

    (University of Applied Sciences and Arts Western Switzerland—Fribourg, HEIA-FR—Institute for Applied Research in Energy Systems, Bd. de Pérolles 80, CP32, CH-1705 Fribourg, Switzerland)

Abstract

Buildings consume a significant amount of energy, estimated at about one-third of total primary energy resources. Building energy efficiency has turned out to be a major issue in limiting the increasing energy demands of the sector. Literature shows that building user behavior can increase the efficiency of the energy used in the building and different strategies have been tested to address and support this issue. These strategies often combine the quantification of energy savings and qualitative interpretation of occupant behavior in order to foster energy efficiency. Strategies that influence building occupant behaviors include eco-feedback, social interaction, and gamification. This review paper presents a study conducted on the state of the art related to the impact of building user behavior on energy efficiency, in order to provide the research community with a better understanding and up-to-date knowledge of energy, comfort-related practices, and potential research opportunities. Achieving and maintaining energy-efficient behavior without decreasing the comfort of building occupants still represents a challenge, despite emerging technologies and strategies as well as general research progress made over the last decade. Conclusions highlight eco-feedback as an effective way to influence behavior, and gamification as a new opportunity to trigger behavioral change. The impact of user behavior is difficult to quantify for methodological reasons. Factors influencing human behavior are numerous and varied. Multi-disciplinary approaches are needed to provide new insights into the inner dynamic nature of occupant’s energy behavior.

Suggested Citation

  • Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:953-:d:141453
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/953/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/953/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kazmi, H. & D’Oca, S. & Delmastro, C. & Lodeweyckx, S. & Corgnati, S.P., 2016. "Generalizable occupant-driven optimization model for domestic hot water production in NZEB," Applied Energy, Elsevier, vol. 175(C), pages 1-15.
    2. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    3. Delzendeh, Elham & Wu, Song & Lee, Angela & Zhou, Ying, 2017. "The impact of occupants’ behaviours on building energy analysis: A research review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1061-1071.
    4. Schweiker, Marcel & Shukuya, Masanori, 2010. "Comparative effects of building envelope improvements and occupant behavioural changes on the exergy consumption for heating and cooling," Energy Policy, Elsevier, vol. 38(6), pages 2976-2986, June.
    5. Evins, Ralph, 2013. "A review of computational optimisation methods applied to sustainable building design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 230-245.
    6. Lopes, M.A.R. & Antunes, C.H. & Martins, N., 2012. "Energy behaviours as promoters of energy efficiency: A 21st century review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4095-4104.
    7. Urge-Vorsatz, Diana & Novikova, Aleksandra, 2008. "Potentials and costs of carbon dioxide mitigation in the world's buildings," Energy Policy, Elsevier, vol. 36(2), pages 642-661, February.
    8. Roetzel, Astrid & Tsangrassoulis, Aris & Dietrich, Udo & Busching, Sabine, 2010. "A review of occupant control on natural ventilation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1001-1013, April.
    9. Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
    10. Marinakis, Vangelis & Doukas, Haris & Karakosta, Charikleia & Psarras, John, 2013. "An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector," Applied Energy, Elsevier, vol. 101(C), pages 6-14.
    11. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    12. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    13. Kenneth Gillingham & Richard G. Newell & Karen Palmer, 2009. "Energy Efficiency Economics and Policy," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 597-620, September.
    14. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2015. "The question of energy reduction: The problem(s) with feedback," Energy Policy, Elsevier, vol. 77(C), pages 89-96.
    15. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    16. Keyvanfar, Ali & Shafaghat, Arezou & Abd Majid, Muhd Zaimi & Bin Lamit, Hasanuddin & Warid Hussin, Mohd & Binti Ali, Kherun Nita & Dhafer Saad, Alshahri, 2014. "User satisfaction adaptive behaviors for assessing energy efficient building indoor cooling and lighting environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 277-295.
    17. Vassileva, Iana & Odlare, Monica & Wallin, Fredrik & Dahlquist, Erik, 2012. "The impact of consumers’ feedback preferences on domestic electricity consumption," Applied Energy, Elsevier, vol. 93(C), pages 575-582.
    18. Gulbinas, R. & Jain, R.K. & Taylor, J.E., 2014. "BizWatts: A modular socio-technical energy management system for empowering commercial building occupants to conserve energy," Applied Energy, Elsevier, vol. 136(C), pages 1076-1084.
    19. Webber, Carrie A. & Roberson, Judy A. & McWhinney, Marla C. & Brown, Richard E. & Pinckard, Margaret J. & Busch, John F., 2006. "After-hours power status of office equipment in the USA," Energy, Elsevier, vol. 31(14), pages 2823-2838.
    20. Ueno, Tsuyoshi & Sano, Fuminori & Saeki, Osamu & Tsuji, Kiichiro, 2006. "Effectiveness of an energy-consumption information system on energy savings in residential houses based on monitored data," Applied Energy, Elsevier, vol. 83(2), pages 166-183, February.
    21. Murtagh, Niamh & Nati, Michele & Headley, William R. & Gatersleben, Birgitta & Gluhak, Alexander & Imran, Muhammad Ali & Uzzell, David, 2013. "Individual energy use and feedback in an office setting: A field trial," Energy Policy, Elsevier, vol. 62(C), pages 717-728.
    22. Anderson, Kyle & Lee, SangHyun, 2016. "An empirically grounded model for simulating normative energy use feedback interventions," Applied Energy, Elsevier, vol. 173(C), pages 272-282.
    23. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    2. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    3. Buckley, Penelope, 2020. "Prices, information and nudges for residential electricity conservation: A meta-analysis," Ecological Economics, Elsevier, vol. 172(C).
    4. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    5. Qadeer Ali & Muhammad Jamaluddin Thaheem & Fahim Ullah & Samad M. E. Sepasgozar, 2020. "The Performance Gap in Energy-Efficient Office Buildings: How the Occupants Can Help?," Energies, MDPI, vol. 13(6), pages 1-27, March.
    6. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
    7. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    8. Christine Boomsma & Rebecca Hafner & Sabine Pahl & Rory V. Jones & Alba Fuertes, 2018. "Should We Play Games Where Energy Is Concerned? Perceptions of Serious Gaming as a Technology to Motivate Energy Behaviour Change among Social Housing Residents," Sustainability, MDPI, vol. 10(6), pages 1-18, May.
    9. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    10. Rafsanjani, Hamed Nabizadeh & Ghahramani, Ali & Nabizadeh, Amir Hossein, 2020. "iSEA: IoT-based smartphone energy assistant for prompting energy-aware behaviors in commercial buildings," Applied Energy, Elsevier, vol. 266(C).
    11. Lopes, M.A.R. & Antunes, C.H. & Martins, N., 2012. "Energy behaviours as promoters of energy efficiency: A 21st century review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4095-4104.
    12. Penelope Buckley, 2020. "Prices, information and nudges for residential electricity conservation : A meta-analysis," Post-Print hal-02500507, HAL.
    13. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    14. Khosrowpour, Ardalan & Xie, Yimeng & Taylor, John E. & Hong, Yili, 2016. "One size does not fit all: Establishing the need for targeted eco-feedback," Applied Energy, Elsevier, vol. 184(C), pages 523-530.
    15. Azar, Elie & Menassa, Carol C., 2014. "A comprehensive framework to quantify energy savings potential from improved operations of commercial building stocks," Energy Policy, Elsevier, vol. 67(C), pages 459-472.
    16. Fettermann, Diego Castro & Cavalcante, Caroline Gobbo Sá & Ayala, Néstor Fabián & Avalone, Marianne Costa, 2020. "Configuration of a smart meter for Brazilian customers," Energy Policy, Elsevier, vol. 139(C).
    17. Alberts, Genevieve & Gurguc, Zeynep & Koutroumpis, Pantelis & Martin, Ralf & Muûls, Mirabelle & Napp, Tamaryn, 2016. "Competition and norms: A self-defeating combination?," Energy Policy, Elsevier, vol. 96(C), pages 504-523.
    18. Stylianos K. Karatzas & Athanasios P. Chassiakos & Anastasios I. Karameros, 2020. "Business Processes and Comfort Demand for Energy Flexibility Analysis in Buildings," Energies, MDPI, vol. 13(24), pages 1-23, December.
    19. Murtagh, Niamh & Nati, Michele & Headley, William R. & Gatersleben, Birgitta & Gluhak, Alexander & Imran, Muhammad Ali & Uzzell, David, 2013. "Individual energy use and feedback in an office setting: A field trial," Energy Policy, Elsevier, vol. 62(C), pages 717-728.
    20. Quaglione, Davide & Cassetta, Ernesto & Crociata, Alessandro & Sarra, Alessandro, 2017. "Exploring additional determinants of energy-saving behaviour: The influence of individuals' participation in cultural activities," Energy Policy, Elsevier, vol. 108(C), pages 503-511.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:953-:d:141453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.