IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v68y2017icp466-477.html
   My bibliography  Save this article

Economy-wide effects of international and Russia's climate policies

Author

Listed:
  • Orlov, Anton
  • Aaheim, Asbjørn

Abstract

The objectives of this paper are to analyse the economy-wide effects of international climate policy on the Russian economy as well as the effects of Russia's climate policy on European economies. Our analysis is based on a general equilibrium model that includes inertias, such as imperfect sectoral labour mobility and vintage capital, and has a detailed depiction of the power generation sector. We found that international climate policy could reduce Russia's private welfare by 1.8% annually due to lower revenues from exports of fossil fuels. At the sectoral level, Russia could gain a comparative advantage in producing energy-intensive commodities and hence Russia's producers of those commodities increase their production and export supplies. This could result in a carbon leakage in Russia. Eliminating implicit subsidies on domestic consumption of gas and petroleum products could reduce Russia's private welfare loss by 0.6% points and eliminate the carbon leakage. Nevertheless, eliminating implicit subsidies on gas and petroleum products might not be sufficient to achieve the pledged emission reductions by 2030. Moreover, this leads to an undesirable increase in coal consumption and therefore, some additional climate policy such as a carbon tax or an emission trading system might be required. We also found that Russia's climate policy could have positive but moderate effects on the European economies; in particular, countries such as Lithuania, Slovakia, and Hungary benefit due to decreased export prices for gas, crude oil, and petroleum products from Russia.

Suggested Citation

  • Orlov, Anton & Aaheim, Asbjørn, 2017. "Economy-wide effects of international and Russia's climate policies," Energy Economics, Elsevier, vol. 68(C), pages 466-477.
  • Handle: RePEc:eee:eneeco:v:68:y:2017:i:c:p:466-477
    DOI: 10.1016/j.eneco.2017.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317303225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Apostolos Serletis, 2012. "Interfuel Substitution in the United States," World Scientific Book Chapters, in: Interfuel Substitution, chapter 2, pages 11-35, World Scientific Publishing Co. Pte. Ltd..
    2. Orlov, Anton, 2015. "An assessment of proposed energy resource tax reform in Russia: A static general equilibrium analysis," Energy Economics, Elsevier, vol. 50(C), pages 251-263.
    3. Robin Boadway & Frank Flatters, 2023. "The Taxation of Natural Resources: Principles and Policy Issues," Springer Books, in: Anwar Shah (ed.), Taxing Choices for Managing Natural Resources, the Environment, and Global Climate Change, chapter 0, pages 17-81, Springer.
    4. Pettersson, Fredrik & Söderholm, Patrik & Lundmark, Robert, 2012. "Fuel switching and climate and energy policies in the European power generation sector: A generalized Leontief model," Energy Economics, Elsevier, vol. 34(4), pages 1064-1073.
    5. Atkinson, Scott E & Halvorsen, Robert, 1976. "Interfuel Substitution in Steam Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(5), pages 959-978, October.
    6. Rutherford, Thomas F., 1995. "Extension of GAMS for complementarity problems arising in applied economic analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 19(8), pages 1299-1324, November.
    7. Orlov Anton & Grethe Harald, 2014. "Introducing Carbon Taxes in Russia: The Relevance of Tax-Interaction Effects," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 14(3), pages 1-32, July.
    8. Orlov, Anton, 2015. "An assessment of optimal gas pricing in Russia: A CGE approach," Energy Economics, Elsevier, vol. 49(C), pages 492-506.
    9. Sergey V. Paltsev, 2001. "The Kyoto Protocol: Regional and Sectoral Contributions to the Carbon Leakage," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 53-80.
    10. Orlov, Anton & Grethe, Harald, 2012. "Carbon taxation and market structure: A CGE analysis for Russia," Energy Policy, Elsevier, vol. 51(C), pages 696-707.
    11. Orlov, Anton & Grethe, Harald & McDonald, Scott, 2013. "Carbon taxation in Russia: Prospects for a double dividend and improved energy efficiency," Energy Economics, Elsevier, vol. 37(C), pages 128-140.
    12. World Bank, 2017. "World Development Indicators 2017," World Bank Publications - Books, The World Bank Group, number 26447, December.
    13. Orlov, Anton, 2016. "Effects of higher domestic gas prices in Russia on the European gas market: A game theoretical Hotelling model," Applied Energy, Elsevier, vol. 164(C), pages 188-199.
    14. Heyndrickx, Christophe & Alexeeva-Talebi, Victoria & Tourdyeva, Natalia, 2012. "To raise or not to raise? Impact assessment of Russia's incremental gas price reform," ZEW Discussion Papers 12-052, ZEW - Leibniz Centre for European Economic Research.
    15. Orlov, Anton, 2017. "Distributional effects of higher natural gas prices in Russia," Energy Policy, Elsevier, vol. 109(C), pages 590-600.
    16. James Ko & Carol Dahl, 2001. "Interfuel substitution in US electricity generation," Applied Economics, Taylor & Francis Journals, vol. 33(14), pages 1833-1843.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Winchester, Niven & Reilly, John M., 2020. "The economic and emissions benefits of engineered wood products in a low-carbon future," Energy Economics, Elsevier, vol. 85(C).
    2. Abbas, Jawad & Wang, Lisu & Ben Belgacem, Samira & Pawar, Puja Sunil & Najam, Hina & Abbas, Jaffar, 2023. "Investment in renewable energy and electricity output: Role of green finance, environmental tax, and geopolitical risk: Empirical evidence from China," Energy, Elsevier, vol. 269(C).
    3. Dai, Zhifeng & Zhang, Xiaotong, 2023. "Climate policy uncertainty and risks taken by the bank: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 87(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orlov, Anton, 2017. "Distributional effects of higher natural gas prices in Russia," Energy Policy, Elsevier, vol. 109(C), pages 590-600.
    2. Rongrong Li & Rui Jiang, 2019. "Is carbon emission decline caused by economic decline? Empirical evidence from Russia," Energy & Environment, , vol. 30(4), pages 672-684, June.
    3. Orlov, Anton, 2015. "An assessment of proposed energy resource tax reform in Russia: A static general equilibrium analysis," Energy Economics, Elsevier, vol. 50(C), pages 251-263.
    4. Ieva Meidute-Kavaliauskiene & Vida Davidaviciene & Shahryar Ghorbani & Iman Ghasemian Sahebi, 2021. "Optimal Allocation of Gas Resources to Different Consumption Sectors Using Multi-Objective Goal Programming," Sustainability, MDPI, vol. 13(10), pages 1-19, May.
    5. Gao, Jing & Nelson, Robert & Zhang, Lei, 2013. "Substitution in the electric power industry: An interregional comparison in the eastern US," Energy Economics, Elsevier, vol. 40(C), pages 316-325.
    6. Harrison Fell & Daniel T. Kaffine, 2014. "A one-two punch: Joint effects of natural gas abundance and renewables on coal-fired power plants," Working Papers 2014-10, Colorado School of Mines, Division of Economics and Business.
    7. Huntington, Hillard G. & Barrios, James J. & Arora, Vipin, 2019. "Review of key international demand elasticities for major industrializing economies," Energy Policy, Elsevier, vol. 133(C).
    8. Orlov, Anton, 2015. "An assessment of optimal gas pricing in Russia: A CGE approach," Energy Economics, Elsevier, vol. 49(C), pages 492-506.
    9. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2022. "How effective is carbon pricing?—A machine learning approach to policy evaluation," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    10. Lafrancois, Becky A., 2012. "A lot left over: Reducing CO2 emissions in the United States’ electric power sector through the use of natural gas," Energy Policy, Elsevier, vol. 50(C), pages 428-435.
    11. Wesseh, Presley K. & Lin, Boqiang, 2019. "Environmental policy and ‘double dividend’ in a transitional economy," Energy Policy, Elsevier, vol. 134(C).
    12. Michielsen, Thomas O., 2014. "Brown backstops versus the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 87-110.
    13. J. Scott Holladay & Steven Soloway, 2015. "The Environmental Impacts of Fuel Switching Power Plants," Working Papers 2015-05, University of Tennessee, Department of Economics.
    14. Daneshzand, Farzaneh & Asali, Mehdi & Al-Sobhi, Saad A. & Diabat, Ali & Elkamel, Ali, 2022. "A simulation-based optimization scheme for phase-out of natural gas subsidies considering welfare and economic measures," Energy, Elsevier, vol. 259(C).
    15. Papageorgiou, Chris & Saam, Marianne & Schulte, Patrick, 2013. "Elasticity of substitution between clean and dirty energy inputs: A macroeconomic perspective," ZEW Discussion Papers 13-087, ZEW - Leibniz Centre for European Economic Research.
    16. Vitor Miguel Ribeiro & Gustavo Soutinho & Isabel Soares, 2023. "Natural Gas Prices in the Framework of European Union’s Energy Transition: Assessing Evolution and Drivers," Energies, MDPI, vol. 16(4), pages 1-46, February.
    17. Orlov, Anton, 2016. "Effects of higher domestic gas prices in Russia on the European gas market: A game theoretical Hotelling model," Applied Energy, Elsevier, vol. 164(C), pages 188-199.
    18. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    19. Arndt Feuerbacher & Jonas Luckmann, Humboldt-University of Berlin, 2017. "Modelling field operations in a computable general equilibrium model: An application to labour shortages in Bhutan," EcoMod2017 10464, EcoMod.
    20. Pettersson, Fredrik & Söderholm, Patrik & Lundmark, Robert, 2012. "Fuel switching and climate and energy policies in the European power generation sector: A generalized Leontief model," Energy Economics, Elsevier, vol. 34(4), pages 1064-1073.

    More about this item

    Keywords

    Economy-wide effects; NDC; Paris agreement; EU; Russia; CGE model;
    All these keywords.

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • D40 - Microeconomics - - Market Structure, Pricing, and Design - - - General
    • E60 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General
    • F11 - International Economics - - Trade - - - Neoclassical Models of Trade
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:68:y:2017:i:c:p:466-477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.