IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp452-465.html
   My bibliography  Save this article

Long-term cost trajectories for biofuels in China projected to 2050

Author

Listed:
  • Xu, Jie
  • Yuan, Zhenhong
  • Chang, Shiyan

Abstract

Biofuels mitigate and offset greenhouse gases. A long-term levelized cost of energy (LCOE) estimation for biofuels in China was carried out, using a novel probabilistic model to analyze the likelihood of biofuels economically outrunning fossil fuels. This model calculated LCOE based on five uncertain input parameters fed into a Monte Carlo simulation, namely, discount rate, firm size, feedstock price, product yield and catalyst/enzyme cost, while key assumptions were used to determine their probability distributions. Model results show that the mean levelized costs of most biofuel technologies will fall below 9500 Chinese Yuan per ton by 2030 and below 9000 Chinese Yuan per ton by 2050; it is highly possible for most biofuel technologies to gain economic feasibility and competitiveness by around 2025–2030 in China. The LCOE reduction of 1.5-generation (1.5G) biofuels is feedstock-driven, while that of 2nd-generation (2G) biofuels is technology-driven. Meanwhile, 1.5G biofuels are more sensitive to crude oil price changes than 2G biofuels, with a drop in crude oil price having a greater effect on 2G biofuels than a rise. On average, every 10% rise in crude oil price accelerates their economic feasibility by 2–3 years, while every 10% drop delays this feasibility by 3–5 years.

Suggested Citation

  • Xu, Jie & Yuan, Zhenhong & Chang, Shiyan, 2018. "Long-term cost trajectories for biofuels in China projected to 2050," Energy, Elsevier, vol. 160(C), pages 452-465.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:452-465
    DOI: 10.1016/j.energy.2018.06.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218311915
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schade, Burkhard & Wiesenthal, Tobias, 2011. "Biofuels: A model based assessment under uncertainty applying the Monte Carlo method," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 92-126, January.
    2. Reichelstein, Stefan & Sahoo, Anshuman, 2015. "Time of day pricing and the levelized cost of intermittent power generation," Energy Economics, Elsevier, vol. 48(C), pages 97-108.
    3. repec:eee:appene:v:222:y:2018:i:c:p:313-328 is not listed on IDEAS
    4. Yu, Suiran & Tao, Jing, 2009. "Energy efficiency assessment by life cycle simulation of cassava-based fuel ethanol for automotive use in Chinese Guangxi context," Energy, Elsevier, vol. 34(1), pages 22-31.
    5. Ouyang, Xiaoling & Lin, Boqiang, 2014. "Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China," Energy Policy, Elsevier, vol. 70(C), pages 64-73.
    6. Pereira, Edinaldo José da Silva & Pinho, João Tavares & Galhardo, Marcos André Barros & Macêdo, Wilson Negrão, 2014. "Methodology of risk analysis by Monte Carlo Method applied to power generation with renewable energy," Renewable Energy, Elsevier, vol. 69(C), pages 347-355.
    7. Wang, Tiejun & Qiu, Songbai & Weng, Yujing & Chen, Lungang & Liu, Qiying & Long, Jinxing & Tan, Jin & Zhang, Qing & Zhang, Qi & Ma, Longlong, 2015. "Liquid fuel production by aqueous phase catalytic transformation of biomass for aviation," Applied Energy, Elsevier, vol. 160(C), pages 329-335.
    8. Langholtz, Matthew & Graham, Robin & Eaton, Laurence & Perlack, Robert & Hellwinkel, Chad & De La Torre Ugarte, Daniel G., 2012. "Price projections of feedstocks for biofuels and biopower in the U.S," Energy Policy, Elsevier, vol. 41(C), pages 484-493.
    9. Arnold, Uwe & Yildiz, Özgür, 2015. "Economic risk analysis of decentralized renewable energy infrastructures – A Monte Carlo Simulation approach," Renewable Energy, Elsevier, vol. 77(C), pages 227-239.
    10. Chen, Xiaoguang & Khanna, Madhu, 2012. "Explaining the reductions in US corn ethanol processing costs: Testing competing hypotheses," Energy Policy, Elsevier, vol. 44(C), pages 153-159.
    11. Jeon, Chanwoong & Shin, Juneseuk, 2014. "Long-term renewable energy technology valuation using system dynamics and Monte Carlo simulation: Photovoltaic technology case," Energy, Elsevier, vol. 66(C), pages 447-457.
    12. Hou, Jian & Zhang, Peidong & Yuan, Xianzheng & Zheng, Yonghong, 2011. "Life cycle assessment of biodiesel from soybean, jatropha and microalgae in China conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5081-5091.
    13. Zhang, Huiming & Aytun Ozturk, U. & Wang, Qunwei & Zhao, Zengyao, 2014. "Biodiesel produced by waste cooking oil: Review of recycling modes in China, the US and Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 677-685.
    14. Chang, Shiyan & Zhao, Lili & Timilsina, Govinda R. & Zhang, Xiliang, 2012. "Biofuels development in China: Technology options and policies needed to meet the 2020 target," Energy Policy, Elsevier, vol. 51(C), pages 64-79.
    15. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    16. García-Gusano, Diego & Espegren, Kari & Lind, Arne & Kirkengen, Martin, 2016. "The role of the discount rates in energy systems optimisation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 56-72.
    17. Li, Shizhong & Li, Guangming & Zhang, Lei & Zhou, Zhixing & Han, Bing & Hou, Wenhui & Wang, Jingbing & Li, Tiancheng, 2013. "A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology," Applied Energy, Elsevier, vol. 102(C), pages 260-265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:energy:v:172:y:2019:i:c:p:691-701 is not listed on IDEAS
    2. repec:eee:energy:v:166:y:2019:i:c:p:569-576 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:452-465. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.