IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp1401-1410.html
   My bibliography  Save this article

An alternative methodology for analyzing the risk and sensitivity of the economic viability for generating electrical energy with biogas from the anaerobic bio-digestion of vinasse

Author

Listed:
  • Schiochet Pinto, Luane
  • Pinheiro Neto, Daywes
  • de Leles Ferreira Filho, Anésio
  • Domingues, Elder Geraldo

Abstract

The process of generating electrical energy using biomass adds value to previously discarded waste, enables the commercialization of surplus electricity, reduces greenhouse gas emissions, and promotes rural development. Despite these technical advantages, the technology cost used in this process requires an evaluation of the economic viability. Therefore, this article presents a methodology that aims to identify the economic viability of investments projects for the generation of electrical energy through biogas from the anaerobic bio-digestion of vinasse, and the most sensitive parameters that affect it. Such methodology is substantiated on the execution of i) the investment risk analysis of this project type, and ii) the univariate sensitivity analysis of some strategically selected variables. The results of its application, using data from a sugar-energy plant located in Brazil, indicate that the plant can produce 554,000 m³ of biogas and 1.3 MWh/month of electricity. This amount can be traded in the Free Contracting Environment and in the Regulated Contracting Environment. A risk analysis employing the Net Present Value indicator shows that the probability of the project being viable in both environments is 78.55% and 87.50%, respectively. This methodology is an important tool which is capable of boosting the productivity of this business category.

Suggested Citation

  • Schiochet Pinto, Luane & Pinheiro Neto, Daywes & de Leles Ferreira Filho, Anésio & Domingues, Elder Geraldo, 2020. "An alternative methodology for analyzing the risk and sensitivity of the economic viability for generating electrical energy with biogas from the anaerobic bio-digestion of vinasse," Renewable Energy, Elsevier, vol. 155(C), pages 1401-1410.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:1401-1410
    DOI: 10.1016/j.renene.2020.04.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120305681
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nadaleti, Willian Cézar, 2019. "Utilization of residues from rice parboiling industries in southern Brazil for biogas and hydrogen-syngas generation: Heat, electricity and energy planning," Renewable Energy, Elsevier, vol. 131(C), pages 55-72.
    2. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
    3. Pinheiro Neto, Daywes & Domingues, Elder Geraldo & Coimbra, António Paulo & de Almeida, Aníbal Traça & Alves, Aylton José & Calixto, Wesley Pacheco, 2017. "Portfolio optimization of renewable energy assets: Hydro, wind, and photovoltaic energy in the regulated market in Brazil," Energy Economics, Elsevier, vol. 64(C), pages 238-250.
    4. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    5. Freitas, F.F. & De Souza, S.S. & Ferreira, L.R.A. & Otto, R.B. & Alessio, F.J. & De Souza, S.N.M. & Venturini, O.J. & Ando Junior, O.H., 2019. "The Brazilian market of distributed biogas generation: Overview, technological development and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 146-157.
    6. Valenti, Francesca & Porto, Simona M.C. & Dale, Bruce E. & Liao, Wei, 2018. "Spatial analysis of feedstock supply and logistics to establish regional biogas power generation: A case study in the region of Sicily," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 50-63.
    7. Velásquez Piñas, Jean Agustin & Venturini, Osvaldo José & Silva Lora, Electo Eduardo & del Olmo, Oscar Almazan & Calle Roalcaba, Orly Denisse, 2019. "An economic holistic feasibility assessment of centralized and decentralized biogas plants with mono-digestion and co-digestion systems," Renewable Energy, Elsevier, vol. 139(C), pages 40-51.
    8. de Jong, Pieter & Kiperstok, Asher & Torres, Ednildo A., 2015. "Economic and environmental analysis of electricity generation technologies in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 725-739.
    9. Golusin, Mirjana & Ostojic, Aleksandar & Latinovic, Smilja & Jandric, Maja & Ivanovic, Olja Munitlak, 2012. "Review of the economic viability of investing and exploiting biogas electricity plant – Case study Vizelj, Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1127-1134.
    10. Gersema, Gerke & Wozabal, David, 2017. "An equilibrium pricing model for wind power futures," Energy Economics, Elsevier, vol. 65(C), pages 64-74.
    11. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
    12. Dennehy, C. & Lawlor, P.G. & Gardiner, G.E. & Jiang, Y. & Shalloo, L. & Zhan, X., 2017. "Stochastic modelling of the economic viability of on-farm co-digestion of pig manure and food waste in Ireland," Applied Energy, Elsevier, vol. 205(C), pages 1528-1537.
    13. Pereira, Edinaldo José da Silva & Pinho, João Tavares & Galhardo, Marcos André Barros & Macêdo, Wilson Negrão, 2014. "Methodology of risk analysis by Monte Carlo Method applied to power generation with renewable energy," Renewable Energy, Elsevier, vol. 69(C), pages 347-355.
    14. Arnold, Uwe & Yildiz, Özgür, 2015. "Economic risk analysis of decentralized renewable energy infrastructures – A Monte Carlo Simulation approach," Renewable Energy, Elsevier, vol. 77(C), pages 227-239.
    15. Rosa, A.P. & Chernicharo, C.A.L. & Lobato, L.C.S. & Silva, R.V. & Padilha, R.F. & Borges, J.M., 2018. "Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant," Renewable Energy, Elsevier, vol. 124(C), pages 21-26.
    16. de Moraes Dutenkefer, Raphael & de Oliveira Ribeiro, Celma & Morgado Mutran, Victoria & Eduardo Rego, Erik, 2018. "The insertion of biogas in the sugarcane mill product portfolio: A study using the robust optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 729-740.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuess, L.T. & Cruz, R.B.C.M. & Zaiat, M. & Nascimento, C.A.O., 2021. "Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Barcelos, Sheyla Thays Vieira & Ferreira, Igor Felipe Lima & Costa, Reginaldo B. & Magalhães Filho, Fernando Jorge Corrêa & Ribeiro, Alisson André & Cereda, Marney Pascoli, 2022. "Startup of UASB reactor with limestone fixed bed operating in the thermophilic range using vinasse as substrate," Renewable Energy, Elsevier, vol. 196(C), pages 610-616.
    3. de Jesus, Ábio Xavier Cardoso & Pinheiro Neto, Daywes & Domingues, Elder Geraldo, 2023. "Computational tool for technical-economic analysis of photovoltaic microgeneration in Brazil," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    2. Felipe Solferini de Carvalho & Luiz Carlos Bevilaqua dos Santos Reis & Pedro Teixeira Lacava & Fernando Henrique Mayworm de Araújo & João Andrade de Carvalho Jr., 2023. "Substitution of Natural Gas by Biomethane: Operational Aspects in Industrial Equipment," Energies, MDPI, vol. 16(2), pages 1-19, January.
    3. Mutran, Victoria M. & Ribeiro, Celma O. & Nascimento, Claudio A.O. & Chachuat, Benoît, 2020. "Risk-conscious optimization model to support bioenergy investments in the Brazilian sugarcane industry," Applied Energy, Elsevier, vol. 258(C).
    4. Zhou, Na & Wu, Qiaosheng & Hu, Xiangping & Xu, Deyi & Wang, Xiaolin, 2020. "Evaluation of Chinese natural gas investment along the Belt and Road Initiative using super slacks-based measurement of efficiency method," Resources Policy, Elsevier, vol. 67(C).
    5. Xu, Jie & Yuan, Zhenhong & Chang, Shiyan, 2018. "Long-term cost trajectories for biofuels in China projected to 2050," Energy, Elsevier, vol. 160(C), pages 452-465.
    6. Morgan Bazilian & Debabrata Chattopadhyay, 2015. "Considering Power System Planning in Fragile and Conflict States," Cambridge Working Papers in Economics 1530, Faculty of Economics, University of Cambridge.
    7. Michał Gołębiewski & Marta Galant-Gołębiewska, 2021. "Economic Model and Risk Analysis of Energy Investments Based on Cogeneration Systems and Renewable Energy Sources," Energies, MDPI, vol. 14(22), pages 1-14, November.
    8. Danijel Topić & Marinko Barukčić & Dražen Mandžukić & Cecilia Mezei, 2020. "Optimization Model for Biogas Power Plant Feedstock Mixture Considering Feedstock and Transportation Costs Using a Differential Evolution Algorithm," Energies, MDPI, vol. 13(7), pages 1-22, April.
    9. Jin, Hongyu & Liu, Shijing & Sun, Jide & Liu, Chunlu, 2021. "Determining concession periods and minimum revenue guarantees in public-private-partnership agreements," European Journal of Operational Research, Elsevier, vol. 291(2), pages 512-524.
    10. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Piotr Sołowiej & Agnieszka Wawrzyniak & Jacek Dach, 2020. "Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects," Energies, MDPI, vol. 13(22), pages 1-17, November.
    11. Li, Xue & Mupondwa, Edmund, 2018. "Commercial feasibility of an integrated closed-loop ethanol-feedlot-biodigester system based on triticale feedstock in Canadian Prairies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 401-413.
    12. John Byrne & Job Taminiau & Kyung Nam Kim & Joohee Lee & Jeongseok Seo, 2017. "Multivariate analysis of solar city economics: impact of energy prices, policy, finance, and cost on urban photovoltaic power plant implementation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
    13. Oscar Gutiérrez & Francisco Ruiz-Aliseda, 2011. "Real options with unknown-date events," Annals of Finance, Springer, vol. 7(2), pages 171-198, May.
    14. Arve, Malin & Zwart, Gijsbert, 2023. "Optimal procurement and investment in new technologies under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    15. Marks, Phillipa & Marks, Brian, 2007. "Spectrum Allocation, Spectrum Commons and Public Goods: the Role of the Market," MPRA Paper 6785, University Library of Munich, Germany.
    16. Pierre‐Richard Agénor, 2004. "Macroeconomic Adjustment and the Poor: Analytical Issues and Cross‐Country Evidence," Journal of Economic Surveys, Wiley Blackwell, vol. 18(3), pages 351-408, July.
    17. Atal, Vidya & Bar, Talia & Gordon, Sidartha, 2016. "Project selection: Commitment and competition," Games and Economic Behavior, Elsevier, vol. 96(C), pages 30-48.
    18. Prelipcean, Gabriela & Boscoianu, Mircea, 2019. "Aspect Regarding the Design of Active Strategies for Venture Capital Financing – the Flexible Adjustment for Romania as a Frontier Capital Market," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2019), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 12-14 September 2019, pages 187-196, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    19. Waters, James, 2015. "Optimal design and consequences of financial disclosure regulation: a real options approach," MPRA Paper 63369, University Library of Munich, Germany.
    20. Golub, Alexander (Голуб, Александр), 2018. "Methodological Issues of Assessing Investment Risks in Projects Weakening the Dependence of the Russian Economy on Natural Resources and Providing a Transition to Low-Carbon Development [Методологи," Working Papers 071802, Russian Presidential Academy of National Economy and Public Administration.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:1401-1410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.