IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v205y2017icp1528-1537.html
   My bibliography  Save this article

Stochastic modelling of the economic viability of on-farm co-digestion of pig manure and food waste in Ireland

Author

Listed:
  • Dennehy, C.
  • Lawlor, P.G.
  • Gardiner, G.E.
  • Jiang, Y.
  • Shalloo, L.
  • Zhan, X.

Abstract

The majority of studies analysing the economic potential of biogas systems utilise deterministic models to assess the viability of a system using fixed inputs. However, changes in market conditions can significantly affect the viability of biogas plants, and need to be accounted for. This study assessed the economic potential of undertaking on-farm anaerobic co-digestion of food waste (FW) and pig manure (PM) using both deterministic and stochastic modelling approaches. The financial viability of three co-digestion plants sized to treat PM generated from 521, 2607 and 5214 sow integrated units was assessed. Under current market conditions the largest co-digestion scenario modelled was found to be unviable. Stochastic modelling of four key input variables (FW availability, renewable electricity tariff, gate fees and digestate disposal costs) was undertaken to assess the sensitivity of project viability to changes in market conditions. Due to the high likelihood of accessing sufficient FW, the smallest co-digestion scenario was found to be the least sensitive to any future changes in market conditions. Due to its potential to treat greater amounts of FW than the smallest scenario, a co-digestion plant designed for a 2607 sow farm had the highest revenue generating potential under optimal market conditions; however, it was more sensitive to changes in FW availability than the smaller scenario. This study illustrates the need for farm-based biogas plant projects to secure long-term, stable supplies of co-substrates and to size plants’ capacity based on the availability of the co-substrates which drive methane production (and revenue generation).

Suggested Citation

  • Dennehy, C. & Lawlor, P.G. & Gardiner, G.E. & Jiang, Y. & Shalloo, L. & Zhan, X., 2017. "Stochastic modelling of the economic viability of on-farm co-digestion of pig manure and food waste in Ireland," Applied Energy, Elsevier, vol. 205(C), pages 1528-1537.
  • Handle: RePEc:eee:appene:v:205:y:2017:i:c:p:1528-1537
    DOI: 10.1016/j.apenergy.2017.08.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917311212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    2. Orive, M. & Cebrián, M. & Zufía, J., 2016. "Techno-economic anaerobic co-digestion feasibility study for two-phase olive oil mill pomace and pig slurry," Renewable Energy, Elsevier, vol. 97(C), pages 532-540.
    3. Goulding, D. & Power, N., 2013. "Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: Biogas to CHP or biomethane as a transport fuel?," Renewable Energy, Elsevier, vol. 53(C), pages 121-131.
    4. Boldrin, Alessio & Baral, Khagendra Raj & Fitamo, Temesgen & Vazifehkhoran, Ali Heidarzadeh & Jensen, Ida Græsted & Kjærgaard, Ida & Lyng, Kari-Anne & van Nguyen, Quan & Nielsen, Lise Skovsgaard & Tri, 2016. "Optimised biogas production from the co-digestion of sugar beet with pig slurry: Integrating energy, GHG and economic accounting," Energy, Elsevier, vol. 112(C), pages 606-617.
    5. Nghiem, Long D. & Koch, Konrad & Bolzonella, David & Drewes, Jörg E., 2017. "Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 354-362.
    6. van Groenendaal, W.J.H. & Kleijnen, J.P.C., 1997. "On the assessment of economic risk : Factorial design versus Monte Carlo methods," Other publications TiSEM fd2a2307-0812-4543-8151-7, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao, Bing & Zhang, Yue & Heaven, Sonia & Banks, Charles J., 2020. "Predicting pH rise as a control measure for integration of CO2 biomethanisation with anaerobic digestion," Applied Energy, Elsevier, vol. 277(C).
    2. Demichelis, Francesca & Fiore, Silvia & Pleissner, Daniel & Venus, Joachim, 2018. "Technical and economic assessment of food waste valorization through a biorefinery chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 38-48.
    3. Zhang, Yizhen & Jiang, Yan & Wang, Shun & Wang, Zhongzhong & Liu, Yanchen & Hu, Zhenhu & Zhan, Xinmin, 2021. "Environmental sustainability assessment of pig manure mono- and co-digestion and dynamic land application of the digestate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Schiochet Pinto, Luane & Pinheiro Neto, Daywes & de Leles Ferreira Filho, Anésio & Domingues, Elder Geraldo, 2020. "An alternative methodology for analyzing the risk and sensitivity of the economic viability for generating electrical energy with biogas from the anaerobic bio-digestion of vinasse," Renewable Energy, Elsevier, vol. 155(C), pages 1401-1410.
    6. Bose, Archishman & O'Shea, Richard & Lin, Richen & Long, Aoife & Rajendran, Karthik & Wall, David & De, Sudipta & Murphy, Jerry D., 2022. "The marginal abatement cost of co-producing biomethane, food and biofertiliser in a circular economy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Li, Xue & Mupondwa, Edmund, 2018. "Commercial feasibility of an integrated closed-loop ethanol-feedlot-biodigester system based on triticale feedstock in Canadian Prairies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 401-413.
    8. Rogério João Lunkes & Fabricia Silva da Rosa & Pamela Lattanzi, 2020. "The Effect of the Perceived Utility of a Management Control System with a Broad Scope on the Use of Food Waste Information and on Financial and Non-Financial Performances in Restaurants," Sustainability, MDPI, vol. 12(15), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhatnagar, N. & Ryan, D. & Murphy, R. & Enright, A.M., 2022. "A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential – Global and Irish perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi & Liu, Xuejun, 2018. "Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production," Energy, Elsevier, vol. 165(PB), pages 411-418.
    3. Gil-Carrera, Laura & Browne, James D. & Kilgallon, Ian & Murphy, Jerry D., 2019. "Feasibility study of an off-grid biomethane mobile solution for agri-waste," Applied Energy, Elsevier, vol. 239(C), pages 471-481.
    4. Patrizio, P. & Chinese, D., 2016. "The impact of regional factors and new bio-methane incentive schemes on the structure, profitability and CO2 balance of biogas plants in Italy," Renewable Energy, Elsevier, vol. 99(C), pages 573-583.
    5. Hengeveld, E.J. & Bekkering, J. & Van Dael, M. & van Gemert, W.J.T. & Broekhuis, A.A., 2020. "Potential advantages in heat and power production when biogas is collected from several digesters using dedicated pipelines - A case study in the “Province of West-Flanders” (Belgium)," Renewable Energy, Elsevier, vol. 149(C), pages 549-564.
    6. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
    8. Goulding, D. & Fitzpatrick, D. & O'Connor, R. & Browne, J.D. & Power, N.M., 2019. "Introducing gaseous transport fuel to Ireland: A strategic infrastructure framework," Renewable Energy, Elsevier, vol. 136(C), pages 548-557.
    9. W C M van Beers & J P C Kleijnen, 2003. "Kriging for interpolation in random simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(3), pages 255-262, March.
    10. Coultry, James & Walsh, Eilín & McDonnell, Kevin P., 2013. "Energy and economic implications of anaerobic digestion pasteurisation regulations in Ireland," Energy, Elsevier, vol. 60(C), pages 125-128.
    11. Janssen, Hans, 2013. "Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 123-132.
    12. Tonanzi, B. & Gallipoli, A. & Gianico, A. & Montecchio, D. & Pagliaccia, P. & Rossetti, S. & Braguglia, C.M., 2021. "Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production," Renewable Energy, Elsevier, vol. 179(C), pages 272-284.
    13. Julia Burmistrova & Marc Beutel & Erin Hestir & Rebecca Ryals & Pramod Pandey, 2022. "Anaerobic Co-Digestion to Enhance Waste Management Sustainability at Yosemite National Park," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    14. Marlena Owczuk & Anna Matuszewska & Stanisław Kruczyński & Wojciech Kamela, 2019. "Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor," Energies, MDPI, vol. 12(6), pages 1-12, March.
    15. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    16. Van Groenendaal, Willem J. H. & Kleijnen, Jack P. C., 2002. "Deterministic versus stochastic sensitivity analysis in investment problems: An environmental case study," European Journal of Operational Research, Elsevier, vol. 141(1), pages 8-20, August.
    17. Philipp Kehrein & Mark van Loosdrecht & Patricia Osseweijer & John Posada & Jo Dewulf, 2020. "The SPPD-WRF Framework: A Novel and Holistic Methodology for Strategical Planning and Process Design of Water Resource Factories," Sustainability, MDPI, vol. 12(10), pages 1-31, May.
    18. Garcia, Natalia Herrero & Mattioli, Andrea & Gil, Aida & Frison, Nicola & Battista, Federico & Bolzonella, David, 2019. "Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1-10.
    19. Gottardo, Marco & Micolucci, Federico & Bolzonella, David & Uellendahl, Hinrich & Pavan, Paolo, 2017. "Pilot scale fermentation coupled with anaerobic digestion of food waste - Effect of dynamic digestate recirculation," Renewable Energy, Elsevier, vol. 114(PB), pages 455-463.
    20. Mike Hewitt & Janosch Ortmann & Walter Rei, 2022. "Decision-based scenario clustering for decision-making under uncertainty," Annals of Operations Research, Springer, vol. 315(2), pages 747-771, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:205:y:2017:i:c:p:1528-1537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.