IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v124y2018icp21-26.html
   My bibliography  Save this article

Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant

Author

Listed:
  • Rosa, A.P.
  • Chernicharo, C.A.L.
  • Lobato, L.C.S.
  • Silva, R.V.
  • Padilha, R.F.
  • Borges, J.M.

Abstract

This study aimed at evaluating the energy potential of the by-products (sludge and biogas) produced in full-scale UASB-based sewage treatment plant (STP). The work was developed at the Laboreaux STP (Population = 70,000 inhabitants), located in the city of Itabira, in the state of Minas Gerais – Brazil. To determine the biogas energy potential, the volumetric production and its composition were monitored. The dehydrated sludge from filter press was characterized according to immediate composition, elemental composition, lower calorific value (LCV) and higher calorific value (HCV). Overall, the gross energy potentials of the biogas and sludge produced in the STP were 7518 MJ d−1 and 10,962 MJ d−1, respectively. Considering the use of biogas to produce electricity (efficiency of 30%), it could be possible to supply 57.6% of energy demand of STP. With a thermal treatment of sludge from filter press, with or without energy recovery, it would have a reduction of mass disposal in the landfill in the order of 46.0% that represents a benefit in the sludge management.

Suggested Citation

  • Rosa, A.P. & Chernicharo, C.A.L. & Lobato, L.C.S. & Silva, R.V. & Padilha, R.F. & Borges, J.M., 2018. "Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant," Renewable Energy, Elsevier, vol. 124(C), pages 21-26.
  • Handle: RePEc:eee:renene:v:124:y:2018:i:c:p:21-26
    DOI: 10.1016/j.renene.2017.09.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811730887X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.09.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felipe Solferini de Carvalho & Luiz Carlos Bevilaqua dos Santos Reis & Pedro Teixeira Lacava & Fernando Henrique Mayworm de Araújo & João Andrade de Carvalho Jr., 2023. "Substitution of Natural Gas by Biomethane: Operational Aspects in Industrial Equipment," Energies, MDPI, vol. 16(2), pages 1-19, January.
    2. De Coster, Jonas & Liu, Jia & Van den Broeck, Rob & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2020. "Influence of electrochemical advanced oxidation on the long-term operation of an Upflow Anaerobic Sludge Blanket (UASB) reactor treating 4-chlorophenol containing wastewater," Renewable Energy, Elsevier, vol. 159(C), pages 683-692.
    3. Schiochet Pinto, Luane & Pinheiro Neto, Daywes & de Leles Ferreira Filho, Anésio & Domingues, Elder Geraldo, 2020. "An alternative methodology for analyzing the risk and sensitivity of the economic viability for generating electrical energy with biogas from the anaerobic bio-digestion of vinasse," Renewable Energy, Elsevier, vol. 155(C), pages 1401-1410.
    4. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Piotr Sołowiej & Agnieszka Wawrzyniak & Jacek Dach, 2020. "Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects," Energies, MDPI, vol. 13(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mónica Vergara-Araya & Verena Hilgenfeldt & Di Peng & Heidrun Steinmetz & Jürgen Wiese, 2021. "Modelling to Lower Energy Consumption in a Large WWTP in China While Optimising Nitrogen Removal," Energies, MDPI, vol. 14(18), pages 1-24, September.
    2. Nancy Diaz-Elsayed & Jiayi Hua & Nader Rezaei & Qiong Zhang, 2023. "A Decision Framework for Designing Sustainable Wastewater-Based Resource Recovery Schemes," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    3. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    4. Ihsan Hamawand & Anas Ghadouani & Jochen Bundschuh & Sara Hamawand & Raed A. Al Juboori & Sayan Chakrabarty & Talal Yusaf, 2017. "A Critical Review on Processes and Energy Profile of the Australian Meat Processing Industry," Energies, MDPI, vol. 10(5), pages 1-29, May.
    5. Ali, Syed Muhammad Hassan & Lenzen, Manfred & Sack, Fabian & Yousefzadeh, Moslem, 2020. "Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids," Applied Energy, Elsevier, vol. 268(C).
    6. Muhammad Tariq Khan & Riaz Ahmad & Gengyuan Liu & Lixiao Zhang & Remo Santagata & Massimiliano Lega & Marco Casazza, 2024. "Potential Environmental Impacts of a Hospital Wastewater Treatment Plant in a Developing Country," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    7. Ana Belén Lozano Avilés & Francisco del Cerro Velázquez & Mercedes Llorens Pascual del Riquelme, 2019. "Methodology for Energy Optimization in Wastewater Treatment Plants. Phase I: Control of the Best Operating Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    8. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Ágota Bányai, 2021. "Energy Consumption-Based Maintenance Policy Optimization," Energies, MDPI, vol. 14(18), pages 1-33, September.
    10. Min-Hwi Kim & Deuk-Won Kim & Gwangwoo Han & Jaehyeok Heo & Dong-Won Lee, 2021. "Ground Source and Sewage Water Source Heat Pump Systems for Block Heating and Cooling Network," Energies, MDPI, vol. 14(18), pages 1-22, September.
    11. Brok, Niclas Brabrand & Munk-Nielsen, Thomas & Madsen, Henrik & Stentoft, Peter A., 2020. "Unlocking energy flexibility of municipal wastewater aeration using predictive control to exploit price differences in power markets," Applied Energy, Elsevier, vol. 280(C).
    12. Mehdi Sharif Shourjeh & Przemysław Kowal & Jakub Drewnowski & Bartosz Szeląg & Aleksandra Szaja & Grzegorz Łagód, 2020. "Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization," Energies, MDPI, vol. 13(21), pages 1-21, November.
    13. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    14. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    15. Radini, Serena & Marinelli, Enrico & Akyol, Çağrı & Eusebi, Anna Laura & Vasilaki, Vasileia & Mancini, Adriano & Frontoni, Emanuele & Bischetti, Gian Battista & Gandolfi, Claudio & Katsou, Evina & Fat, 2021. "Urban water-energy-food-climate nexus in integrated wastewater and reuse systems: Cyber-physical framework and innovations," Applied Energy, Elsevier, vol. 298(C).
    16. Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).
    17. Jose M. Vindel & Estrella Trincado & Antonio Sánchez-Bayón, 2021. "European Union Green Deal and the Opportunity Cost of Wastewater Treatment Projects," Energies, MDPI, vol. 14(7), pages 1-18, April.
    18. Guven, Huseyin & Ersahin, Mustafa Evren & Dereli, Recep Kaan & Ozgun, Hale & Isik, Isa & Ozturk, Izzet, 2019. "Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal wastewater and food waste," Energy, Elsevier, vol. 172(C), pages 1027-1036.
    19. Michael Schäfer & Oliver Gretzschel & Heidrun Steinmetz, 2020. "The Possible Roles of Wastewater Treatment Plants in Sector Coupling," Energies, MDPI, vol. 13(8), pages 1-20, April.
    20. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:124:y:2018:i:c:p:21-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.