IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1086-d1598126.html
   My bibliography  Save this article

Energy Efficiency Analysis of Water Treatment Plants: Current Status and Future Trends

Author

Listed:
  • Iwona Skoczko

    (Department of Technology in Environmental Engineering, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, St. Wiejska 45A, 15-351 Bialystok, Poland)

Abstract

The energy efficiency of water treatment plants (WTPs) plays a key role in the sustainable management of water resources. In the face of increasing water demand, climate change, and increasingly stringent environmental regulations, optimising the energy consumption of treatment processes is becoming a priority for water system operators and decision-makers alike. Water treatment plants, depending on the type of water source served (groundwater, infiltration, surface water), vary considerably in terms of their technological design, which directly affects their energy efficiency and operating costs. According to the International Water Association, the water sector accounts for approximately 4% of global electricity consumption, a significant proportion of which is consumed by water treatment and distribution processes. Electricity is used in many process steps, such as water pumping, aeration, filtration, disinfection, and filter flushing. The energy consumption of a System for Upgrading Water (SUW) depends not only on the quality of taken raw water, but also on the size of the station, used technologies, and operation organisation. This study shows that implementing high-efficiency pumping systems and AI-based optimisation can reduce energy consumption in WTPs by 20–30%. The introduction of membrane filtration in surface water plants has demonstrated a reduction in energy use by up to 50%, while the use of biogas from sludge treatment has cut external energy demand by 15–25%. The results emphasise the potential to reduce CO 2 emissions by 10–20% compared to conventional treatment methods. However, achieving significant reductions in energy consumption in SUW requires a comprehensive understanding of the diversity of water facilities, technological processes, and specific energy requirements.

Suggested Citation

  • Iwona Skoczko, 2025. "Energy Efficiency Analysis of Water Treatment Plants: Current Status and Future Trends," Energies, MDPI, vol. 18(5), pages 1-35, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1086-:d:1598126
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1086/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1086/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    2. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    3. Syed Mithun Ali & Andrea Appolloni & Fausto Cavallaro & Idiano D’Adamo & Assunta Di Vaio & Francesco Ferella & Massimo Gastaldi & Muhammad Ikram & Nallapaneni Manoj Kumar & Michael Alan Martin & Abdul, 2023. "Development Goals towards Sustainability," Sustainability, MDPI, vol. 15(12), pages 1-11, June.
    4. Sergio A. Silva-Rubio & Yamisleydi Salgueiro & Daniel Mora-Meliá & Jimmy H. Gutiérrez-Bahamondes, 2024. "Improving Water and Energy Resource Management: A Comparative Study of Solution Representations for the Pump Scheduling Optimization Problem," Mathematics, MDPI, vol. 12(13), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mónica Vergara-Araya & Verena Hilgenfeldt & Di Peng & Heidrun Steinmetz & Jürgen Wiese, 2021. "Modelling to Lower Energy Consumption in a Large WWTP in China While Optimising Nitrogen Removal," Energies, MDPI, vol. 14(18), pages 1-24, September.
    2. Odeh Al-Jayyousi & Hira Amin & Hiba Ali Al-Saudi & Amjaad Aljassas & Evren Tok, 2023. "Mission-Oriented Innovation Policy for Sustainable Development: A Systematic Literature Review," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    3. Raquel Francisco Mafra & Jacir Leonir Casagrande & Ana Regina de Aguiar Dutra & Nei Antonio Nunes & Felipe Texeira Dias & Samuel Borges Barbosa & José Baltazar Salgueirinho Osório de Andrade Guerra, 2024. "Social Innovation as a Support for the Visibility of Vulnerable Communities," Sustainability, MDPI, vol. 16(11), pages 1-22, May.
    4. Nancy Diaz-Elsayed & Jiayi Hua & Nader Rezaei & Qiong Zhang, 2023. "A Decision Framework for Designing Sustainable Wastewater-Based Resource Recovery Schemes," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    5. Alrbai, Mohammad & Al-Dahidi, Sameer & Alahmer, Hussein & Al-Ghussain, Loiy & Al-Rbaihat, Raed & Hayajneh, Hassan & Alahmer, Ali, 2024. "Integration and Optimization of a Waste Heat Driven Organic Rankine Cycle for Power Generation in Wastewater Treatment Plants," Energy, Elsevier, vol. 308(C).
    6. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    7. Idiano D’Adamo & Cristina Di Carlo & Massimo Gastaldi & Edouard Nicolas Rossi & Antonio Felice Uricchio, 2024. "Economic Performance, Environmental Protection and Social Progress: A Cluster Analysis Comparison towards Sustainable Development," Sustainability, MDPI, vol. 16(12), pages 1-24, June.
    8. Ihsan Hamawand & Anas Ghadouani & Jochen Bundschuh & Sara Hamawand & Raed A. Al Juboori & Sayan Chakrabarty & Talal Yusaf, 2017. "A Critical Review on Processes and Energy Profile of the Australian Meat Processing Industry," Energies, MDPI, vol. 10(5), pages 1-29, May.
    9. Ali, Syed Muhammad Hassan & Lenzen, Manfred & Sack, Fabian & Yousefzadeh, Moslem, 2020. "Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids," Applied Energy, Elsevier, vol. 268(C).
    10. NKipchirchir Samuel Ronoh & Marciano Mutiga & Urbanus Mwinzi Ndolo & Bitok Kipkosgei & Nancy Chemutai, 2024. "From Tourists to Advocates: How Environmental Sustainability Practices Inspire Loyalty and Ambassadorial Behavior," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(9), pages 2823-2834, September.
    11. Mengxuan Yan & Yuhong Tian & Lizhu Wu & Huichao Zheng, 2024. "Analyzing the Spatiotemporal Pattern and Interaction of SDGs for Sustainable Development in Inner Mongolia," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    12. Ana M. Osorio & Luisa F. Úsuga & Jaime A. Restrepo-Carmona & Isabel Rendón & Julián Sierra-Pérez & Rafael E. Vásquez, 2024. "Methodology for Stakeholder Prioritization in the Context of Digital Transformation and Society 5.0," Sustainability, MDPI, vol. 16(13), pages 1-18, June.
    13. Gupta, Akash Som & Khatiwada, Dilip, 2024. "Investigating the sustainability of biogas recovery systems in wastewater treatment plants- A circular bioeconomy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Catalina Cruz-Piedrahita & Francisco-Javier Martinez-Carranza & Maria Mar Delgado-Serrano, 2024. "A Multidimensional Approach to Understanding Food Deserts in Vulnerable Contexts," Sustainability, MDPI, vol. 16(3), pages 1-19, January.
    15. Ingi Runar Edvardsson & Johanna Gardarsdottir, 2023. "Navigating Uncharted Waters: Exploring Leaders’ Challenges in the Era of COVID-19 and the Rise of Telework," Sustainability, MDPI, vol. 15(23), pages 1-24, November.
    16. Mark Elder & Elli Newman, 2023. "Monitoring G20 Countries’ SDG Implementation Policies and Budgets Reported in Their Voluntary National Reviews (VNRs)," Sustainability, MDPI, vol. 15(22), pages 1-27, November.
    17. Muhammad Tariq Khan & Riaz Ahmad & Gengyuan Liu & Lixiao Zhang & Remo Santagata & Massimiliano Lega & Marco Casazza, 2024. "Potential Environmental Impacts of a Hospital Wastewater Treatment Plant in a Developing Country," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    18. Zhu, Wenjing & Duan, Cuncun & Chen, Bin, 2024. "Energy efficiency assessment of wastewater treatment plants in China based on multiregional input–output analysis and data envelopment analysis," Applied Energy, Elsevier, vol. 356(C).
    19. Ana Belén Lozano Avilés & Francisco del Cerro Velázquez & Mercedes Llorens Pascual del Riquelme, 2019. "Methodology for Energy Optimization in Wastewater Treatment Plants. Phase I: Control of the Best Operating Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    20. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1086-:d:1598126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.