IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v139y2019icp40-51.html
   My bibliography  Save this article

An economic holistic feasibility assessment of centralized and decentralized biogas plants with mono-digestion and co-digestion systems

Author

Listed:
  • Velásquez Piñas, Jean Agustin
  • Venturini, Osvaldo José
  • Silva Lora, Electo Eduardo
  • del Olmo, Oscar Almazan
  • Calle Roalcaba, Orly Denisse

Abstract

Agricultural biogas plants are becoming attractive in several countries, mainly due to the possibility of obtaining additional incomes by selling energy to electrical grid. However, specific conditions under which biogas plants would be economically viable are not yet well known. This paper presents results of analysis made to find optimal sizes of biogas plants in terms of electrical capacity. They were evaluated based on economic models of centralized and decentralized technological schemes and their respective mono-digestion and co-digestion systems of cattle manure, maize silage and grass silage as feedstock, for electricity generation capacities between 100 and 1000 kWe. Results show that biogas plants using mono-substrates such as cattle manure present economic viability for electrical power higher than 740 kWe. Co-digestion system presents economic viability for electrical power higher 1000 kWe. Finally, public policies related to development of these technologies, mainly in the form of subsidies, such as those existing in developed countries, could help to make the co-digestion agricultural biogas plants economically viable for the Brazilian scenario. The novelty of the paper consists in the determination of the optimum size of mono- and co-digestion patterns for Brazilian conditions showing as results the necessary level of subsidies and the paths to economic viability.

Suggested Citation

  • Velásquez Piñas, Jean Agustin & Venturini, Osvaldo José & Silva Lora, Electo Eduardo & del Olmo, Oscar Almazan & Calle Roalcaba, Orly Denisse, 2019. "An economic holistic feasibility assessment of centralized and decentralized biogas plants with mono-digestion and co-digestion systems," Renewable Energy, Elsevier, vol. 139(C), pages 40-51.
  • Handle: RePEc:eee:renene:v:139:y:2019:i:c:p:40-51
    DOI: 10.1016/j.renene.2019.02.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119302071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.02.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coimbra-Araújo, Carlos H. & Mariane, Leidiane & Júnior, Cicero Bley & Frigo, Elisandro Pires & Frigo, Michelle Sato & Araújo, Izabela Regina Costa & Alves, Helton José, 2014. "Brazilian case study for biogas energy: Production of electric power, heat and automotive energy in condominiums of agroenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 826-839.
    2. Asam, Zaki-ul-Zaman & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Rafique, Rashad & Kiely, Ger & Murphy, Jerry D., 2011. "How can we improve biomethane production per unit of feedstock in biogas plants?," Applied Energy, Elsevier, vol. 88(6), pages 2013-2018, June.
    3. Karellas, Sotirios & Boukis, Ioannis & Kontopoulos, Georgios, 2010. "Development of an investment decision tool for biogas production from agricultural waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1273-1282, May.
    4. Sultana, Arifa & Kumar, Amit, 2014. "Development of tortuosity factor for assessment of lignocellulosic biomass delivery cost to a biorefinery," Applied Energy, Elsevier, vol. 119(C), pages 288-295.
    5. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.
    6. Lantz, Mikael, 2012. "The economic performance of combined heat and power from biogas produced from manure in Sweden – A comparison of different CHP technologies," Applied Energy, Elsevier, vol. 98(C), pages 502-511.
    7. Rogoff, Kenneth, 2017. "Monetary policy in a low interest rate world," Journal of Policy Modeling, Elsevier, vol. 39(4), pages 673-679.
    8. Sgroi, Filippo & Foderà, Mario & Trapani, Anna Maria Di & Tudisca, Salvatore & Testa, Riccardo, 2015. "Economic evaluation of biogas plant size utilizing giant reed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 403-409.
    9. Skovsgaard, Lise & Jacobsen, Henrik Klinge, 2017. "Economies of scale in biogas production and the significance of flexible regulation," Energy Policy, Elsevier, vol. 101(C), pages 77-89.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qingbin & Thompson, Ethan & Tweedy, Angela & O'Leary, Mary L. & Crossman, Williams W., 2021. "Potentials and obstacles for community anaerobic digesters in the United States: Evidence from a case study in Vermont," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Camila Agner D’Aquino & Bruno Alves Pereira & Tulio Ferreira Sawatani & Samantha Coelho de Moura & Alice Tagima & Júlia Carolina Bevervanso Borba Ferrarese & Samantha Christine Santos & Ildo Luis Saue, 2022. "Biogas Potential from Slums as a Sustainable and Resilient Route for Renewable Energy Diffusion in Urban Areas and Organic Waste Management in Vulnerable Communities in São Paulo," Sustainability, MDPI, vol. 14(12), pages 1-10, June.
    3. Katarzyna Ignatowicz & Jacek Piekarski & Paweł Kogut, 2021. "Influence of Selected Substrate Dosage on the Process of Biogas Installation Start-Up in Real Conditions," Energies, MDPI, vol. 14(18), pages 1-11, September.
    4. Qiang Wang & Liying Yu & Yueling Yang & Haoran Zhao & Yanqing Song & Wenhao Song & Jinmeng Liu, 2022. "Let the Farmers Embrace “Carbon Neutrality”: Taking the Centralized Biogas as an Example," IJERPH, MDPI, vol. 19(15), pages 1-13, August.
    5. Schiochet Pinto, Luane & Pinheiro Neto, Daywes & de Leles Ferreira Filho, Anésio & Domingues, Elder Geraldo, 2020. "An alternative methodology for analyzing the risk and sensitivity of the economic viability for generating electrical energy with biogas from the anaerobic bio-digestion of vinasse," Renewable Energy, Elsevier, vol. 155(C), pages 1401-1410.
    6. González, Ruben & García-Cascallana, José & Gómez, Xiomar, 2023. "Energetic valorization of biogas. A comparison between centralized and decentralized approach," Renewable Energy, Elsevier, vol. 215(C).
    7. Palma-Heredia, D. & Verdaguer, M. & Molinos-Senante, M. & Poch, M. & Cugueró-Escofet, M.À., 2021. "Optimised blending for anaerobic co-digestion using ant colony approach: Besòs river basin case study," Renewable Energy, Elsevier, vol. 168(C), pages 141-150.
    8. Janina Piekutin & Monika Puchlik & Michał Haczykowski & Katarzyna Dyczewska, 2021. "The Efficiency of the Biogas Plant Operation Depending on the Substrate Used," Energies, MDPI, vol. 14(11), pages 1-12, May.
    9. Danijel Topić & Marinko Barukčić & Dražen Mandžukić & Cecilia Mezei, 2020. "Optimization Model for Biogas Power Plant Feedstock Mixture Considering Feedstock and Transportation Costs Using a Differential Evolution Algorithm," Energies, MDPI, vol. 13(7), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    2. Doddapaneni, Tharaka Rama Krishna C. & Praveenkumar, Ramasamy & Tolvanen, Henrik & Rintala, Jukka & Konttinen, Jukka, 2018. "Techno-economic evaluation of integrating torrefaction with anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 272-284.
    3. Herbes, Carsten & Halbherr, Verena & Braun, Lorenz, 2018. "Factors influencing prices for heat from biogas plants," Applied Energy, Elsevier, vol. 221(C), pages 308-318.
    4. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    5. Yang, Jin & Chen, Bin, 2014. "Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County," Applied Energy, Elsevier, vol. 118(C), pages 173-182.
    6. Siegrist, Armin & Bowman, Gillianne & Burg, Vanessa, 2022. "Energy generation potentials from agricultural residues: The influence of techno-spatial restrictions on biomethane, electricity, and heat production," Applied Energy, Elsevier, vol. 327(C).
    7. Budzianowski, Wojciech M. & Budzianowska, Dominika A., 2015. "Economic analysis of biomethane and bioelectricity generation from biogas using different support schemes and plant configurations," Energy, Elsevier, vol. 88(C), pages 658-666.
    8. Shane, Agabu & Gheewala, Shabbir H. & Phiri, Seveliano, 2017. "Rural domestic biogas supply model for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 683-697.
    9. Van Dael, Miet & Van Passel, Steven & Pelkmans, Luc & Guisson, Ruben & Reumermann, Patrick & Luzardo, Nathalie Marquez & Witters, Nele & Broeze, Jan, 2013. "A techno-economic evaluation of a biomass energy conversion park," Applied Energy, Elsevier, vol. 104(C), pages 611-622.
    10. Hengeveld, E.J. & Bekkering, J. & Van Dael, M. & van Gemert, W.J.T. & Broekhuis, A.A., 2020. "Potential advantages in heat and power production when biogas is collected from several digesters using dedicated pipelines - A case study in the “Province of West-Flanders” (Belgium)," Renewable Energy, Elsevier, vol. 149(C), pages 549-564.
    11. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    12. Orive, M. & Cebrián, M. & Zufía, J., 2016. "Techno-economic anaerobic co-digestion feasibility study for two-phase olive oil mill pomace and pig slurry," Renewable Energy, Elsevier, vol. 97(C), pages 532-540.
    13. Namuli, R. & Pillay, P. & Jaumard, B. & Laflamme, C.B., 2013. "Threshold herd size for commercial viability of biomass waste to energy conversion systems on rural farms," Applied Energy, Elsevier, vol. 108(C), pages 308-322.
    14. Gazda, Wiesław & Stanek, Wojciech, 2016. "Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system," Applied Energy, Elsevier, vol. 169(C), pages 138-149.
    15. Sean O’Connor & Ehiaze Ehimen & Suresh C. Pillai & Gary Lyons & John Bartlett, 2020. "Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms," Energies, MDPI, vol. 13(3), pages 1-20, February.
    16. Andante Hadi Pandyaswargo & Premakumara Jagath Dickella Gamaralalage & Chen Liu & Michael Knaus & Hiroshi Onoda & Faezeh Mahichi & Yanghui Guo, 2019. "Challenges and an Implementation Framework for Sustainable Municipal Organic Waste Management Using Biogas Technology in Emerging Asian Countries," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    17. Guan, Tingting & Alvfors, Per & Lindbergh, Göran, 2014. "Investigation of the prospect of energy self-sufficiency and technical performance of an integrated PEMFC (proton exchange membrane fuel cell), dairy farm and biogas plant system," Applied Energy, Elsevier, vol. 130(C), pages 685-691.
    18. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Livestock manure and crop residue for energy generation: Macro-assessment at a national scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 537-550.
    19. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    20. Hamad, Tarek A. & Agll, Abdulhakim A. & Hamad, Yousif M. & Bapat, Sushrut & Thomas, Mathew & Martin, Kevin B. & Sheffield, John W., 2014. "Study of a molten carbonate fuel cell combined heat, hydrogen and power system," Energy, Elsevier, vol. 75(C), pages 579-588.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:139:y:2019:i:c:p:40-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.