IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p2316-d1606901.html
   My bibliography  Save this article

Transitioning Hochschule Geisenheim University: A Shift from NET Source to NET Sink Regarding Its CO 2 Emissions

Author

Listed:
  • Georg Ardissone-Krauss

    (Institute for Applied Ecology, Hochschule Geisenheim University, 65366 Geisenheim, Germany
    Department of Strategic University Development and Sustainability, Hochschule Geisenheim University, 65366 Geisenheim, Germany)

  • Moritz Wagner

    (Institute for Applied Ecology, Hochschule Geisenheim University, 65366 Geisenheim, Germany)

  • Claudia Kammann

    (Institute for Applied Ecology, Hochschule Geisenheim University, 65366 Geisenheim, Germany)

Abstract

Various Higher Education Institutions (HEIs) set themselves goals to become carbon neutral through the implementation of different reduction strategies such as the replacement of fossil-fueled vehicles with electric cars. However, even if all reduction measures are taken, residual GHG emissions will still remain. Therefore, most HEIs have to compensate for the remaining emissions by, for example, buying carbon credits. However, due to growing criticism of carbon credit purchases, HEIs need to explore options for establishing carbon sinks on their own premises to offset their remaining, unavoidable emissions. This study aimed to assess the CO 2 footprint of Hochschule Geisenheim University (HGU) as an exemplary HEI, identify emission hot-spots, and investigate the potential of biomass utilization for achieving carbon neutrality or even negative emissions. The analysis found that HGU’s main emissions were scope 1 emissions, primarily caused by on-site heat supply. The research determined that conversion to a wood chip-based heating system alone was insufficient to achieve climate neutrality, but this goal could be achieved through additional carbon dioxide removal (CDR). By operating a pyrolysis-based bivalent heating system, the study demonstrated that heat demand could be covered while producing sufficient C-sink certificates to transform HGU into the first carbon-negative HEI, at a comparable price to conventional combustion systems. Surplus C-sink certificates could be made available to other authorities or ministries. The results showed that bivalent heating systems can play an important role in HEI transitions to CO 2 neutrality by contributing significantly to the most urgent challenge of the coming decades: removing CO 2 from the atmosphere to limit global warming to as far below 2 °C as possible at nearly no extra costs.

Suggested Citation

  • Georg Ardissone-Krauss & Moritz Wagner & Claudia Kammann, 2025. "Transitioning Hochschule Geisenheim University: A Shift from NET Source to NET Sink Regarding Its CO 2 Emissions," Sustainability, MDPI, vol. 17(5), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2316-:d:1606901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/2316/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/2316/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lambert Schneider & Anja Kollmuss, 2015. "Perverse effects of carbon markets on HFC-23 and SF6 abatement projects in Russia," Nature Climate Change, Nature, vol. 5(12), pages 1061-1063, December.
    2. Opel, O. & Strodel, N. & Werner, K.F. & Geffken, J. & Tribel, A. & Ruck, W.K.L., 2017. "Climate-neutral and sustainable campus Leuphana University of Lueneburg," Energy, Elsevier, vol. 141(C), pages 2628-2639.
    3. Gwendolyn Bailey & Thomas LaPoint, 2016. "Comparing Greenhouse Gas Emissions across Texas Universities," Sustainability, MDPI, vol. 8(1), pages 1-24, January.
    4. Barbara Haya & Danny Cullenward & Aaron L. Strong & Emily Grubert & Robert Heilmayr & Deborah A. Sivas & Michael Wara, 2020. "Managing uncertainty in carbon offsets: insights from California’s standardized approach," Climate Policy, Taylor & Francis Journals, vol. 20(9), pages 1112-1126, October.
    5. Saaida Khlifi & Victor Pozzobon & Marzouk Lajili, 2024. "A Comprehensive Review of Syngas Production, Fuel Properties, and Operational Parameters for Biomass Conversion," Energies, MDPI, vol. 17(15), pages 1-17, July.
    6. Velásquez Piñas, Jean Agustin & Venturini, Osvaldo José & Silva Lora, Electo Eduardo & del Olmo, Oscar Almazan & Calle Roalcaba, Orly Denisse, 2019. "An economic holistic feasibility assessment of centralized and decentralized biogas plants with mono-digestion and co-digestion systems," Renewable Energy, Elsevier, vol. 139(C), pages 40-51.
    7. Ana M. Osorio & Luisa F. Úsuga & Rafael E. Vásquez & César Nieto-Londoño & Maria E. Rinaudo & José A. Martínez & Walter Leal Filho, 2022. "Towards Carbon Neutrality in Higher Education Institutions: Case of Two Private Universities in Colombia," Sustainability, MDPI, vol. 14(3), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedict S. Probst & Malte Toetzke & Andreas Kontoleon & Laura Díaz Anadón & Jan C. Minx & Barbara K. Haya & Lambert Schneider & Philipp A. Trotter & Thales A. P. West & Annelise Gill-Wiehl & Volker H, 2024. "Systematic assessment of the achieved emission reductions of carbon crediting projects," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Raphael Calel & Jonathan Colmer & Antoine Dechezleprêtre & Matthieu Glachant, 2025. "Do Carbon Offsets Offset Carbon?," American Economic Journal: Applied Economics, American Economic Association, vol. 17(1), pages 1-40, January.
    3. Liziane Araújo da Silva & Ana Regina de Aguiar Dutra & José Baltazar Salgueirinho Osório de Andrade Guerra, 2023. "Decarbonization in Higher Education Institutions as a Way to Achieve a Green Campus: A Literature Review," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    4. Giorgio Mion & Angela Broglia & Angelo Bonfanti, 2019. "Do Codes of Ethics Reveal a University’s Commitment to Sustainable Development? Evidence from Italy," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    5. Dwi Prasetyanto & Muhamad Rizki & Yos Sunitiyoso, 2022. "Online Learning Participation Intention after COVID-19 Pandemic in Indonesia: Do Students Still Make Trips for Online Class?," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    6. Piotr Kosiński & Aldona Skotnicka-Siepsiak, 2022. "Possibilities of Adapting the University Lecture Room to the Green University Standard in Terms of Thermal Comfort and Ventilation Accuracy," Energies, MDPI, vol. 15(10), pages 1-23, May.
    7. Gonçalves Rigueira Pinheiro Castro, Pedro Henrique & Filho, Delly Oliveira & Rosa, André Pereira & Navas Gracia, Luis Manuel & Almeida Silva, Thais Cristina, 2024. "Comparison of externalities of biogas and photovoltaic solar energy for energy planning," Energy Policy, Elsevier, vol. 188(C).
    8. Tiffany Jurge & Eric Urbaniak & Matthew Liesch, 2024. "Campus sustainability office representations of the DEIJ-sustainability nexus," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 14(3), pages 607-617, September.
    9. Eckard Helmers & Chia Chien Chang & Justin Dauwels, 2022. "Carbon Footprinting of Universities Worldwide Part II: First Quantification of Complete Embodied Impacts of Two Campuses in Germany and Singapore," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    10. Paul J. Burke, 2016. "Undermined by Adverse Selection: Australia's Direct Action Abatement Subsidies," Economic Papers, The Economic Society of Australia, vol. 35(3), pages 216-229, September.
    11. Hiago Oliveira & Isabela Pinheiro & Ana Ramos & Osvaldo Venturini & Adriano Mariano & York Santiago, 2024. "Influence of Physicochemical Properties of Oil Sludge on Syngas Production for Energy Applications," Resources, MDPI, vol. 14(1), pages 1-27, December.
    12. Camila Agner D’Aquino & Bruno Alves Pereira & Tulio Ferreira Sawatani & Samantha Coelho de Moura & Alice Tagima & Júlia Carolina Bevervanso Borba Ferrarese & Samantha Christine Santos & Ildo Luis Saue, 2022. "Biogas Potential from Slums as a Sustainable and Resilient Route for Renewable Energy Diffusion in Urban Areas and Organic Waste Management in Vulnerable Communities in São Paulo," Sustainability, MDPI, vol. 14(12), pages 1-10, June.
    13. Stefano Carattini & Alessandro Tavoni, 2016. "How green are economists?," GRI Working Papers 247, Grantham Research Institute on Climate Change and the Environment.
    14. Sovacool, Benjamin K. & Griffiths, Steve & Kim, Jinsoo & Bazilian, Morgan, 2021. "Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Gunther Gehlert & Marlies Wiegand & Mariya Lymar & Stefan Huusmann, 2022. "Simultaneity in Renewable Building Energy Supply—A Case Study on a Lecturing and Exhibition Building on a University Campus Located in the Cfb Climate Zone," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    16. Mikel Perales Jarillo & Luis Pedraza & Pablo Moreno Ger & Elvira Bocos, 2019. "Challenges of Online Higher Education in the Face of the Sustainability Objectives of the United Nations: Carbon Footprint, Accessibility and Social Inclusion," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
    17. Bruno D. V. Marino & Nahuel Bautista & Brandt Rousseaux, 2021. "Howland Forest, ME, USA: Multi-Gas Flux (CO 2 , CH 4 , N 2 O) Social Cost Product Underscores Limited Carbon Proxies," Land, MDPI, vol. 10(4), pages 1-17, April.
    18. Baranzini, Andrea & Borzykowski, Nicolas & Carattini, Stefano, 2018. "Carbon offsets out of the woods? Acceptability of domestic vs. international reforestation programmes in the lab," Journal of Forest Economics, Elsevier, vol. 32(C), pages 1-12.
    19. Tian, Xueyu & Zhou, Yilun & Morris, Brianna & You, Fengqi, 2022. "Sustainable design of Cornell University campus energy systems toward climate neutrality and 100% renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Idiano D’Adamo & Massimo Gastaldi, 2023. "Perspectives and Challenges on Sustainability: Drivers, Opportunities and Policy Implications in Universities," Sustainability, MDPI, vol. 15(4), pages 1-6, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2316-:d:1606901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.