IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v88y2015icp658-666.html
   My bibliography  Save this article

Economic analysis of biomethane and bioelectricity generation from biogas using different support schemes and plant configurations

Author

Listed:
  • Budzianowski, Wojciech M.
  • Budzianowska, Dominika A.

Abstract

Commercial renewable energy projects are sensitive to policy instruments that shape the rate of deployment of renewables and affect their technological evolution. This study evaluates the economic performance of biogas projects under policy involving two novel instruments: (i) BFP (biomethane feed-in premium) and CMP (carbon mitigation premium) able to shape economic attractiveness and future technological evolution of biogas. The study reveals that only conventional biogas CHP plants are likely to be profitable under current policies. Biomethane plants require incentives e.g. from BFP, but interestingly the sufficient incentive can be more than 50% lower than the current incentive for electricity. The study also finds that innovative pressurised anaerobic digestion that can achieve direct carbon intensity of 13 tCO2 per GWhf (compared with about 168 tCO2 per GWhf for conventional biogas upgrading) can be very economically attractive, if policy combining BFP and CMP is implemented. The total support required from governments under the policy combining BFP and CMP instruments is similar or even lower than that currently available for bioelectricity. In addition, carbon mitigation benefits are achieved. Policy instruments and technological innovations are therefore critical for ensuring high energy outputs from biogas at a minimal economically justified carbon footprint.

Suggested Citation

  • Budzianowski, Wojciech M. & Budzianowska, Dominika A., 2015. "Economic analysis of biomethane and bioelectricity generation from biogas using different support schemes and plant configurations," Energy, Elsevier, vol. 88(C), pages 658-666.
  • Handle: RePEc:eee:energy:v:88:y:2015:i:c:p:658-666
    DOI: 10.1016/j.energy.2015.05.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215007070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Browne, James D. & Allen, Eoin & Murphy, Jerry D., 2014. "Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation," Applied Energy, Elsevier, vol. 128(C), pages 307-314.
    2. Budzianowski, Wojciech M., 2012. "Target for national carbon intensity of energy by 2050: A case study of Poland's energy system," Energy, Elsevier, vol. 46(1), pages 575-581.
    3. Drouineau, Mathilde & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2015. "Increasing shares of intermittent sources in Reunion Island: Impacts on the future reliability of power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 120-128.
    4. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    5. Kalt, Gerald & Kranzl, Lukas, 2011. "Assessing the economic efficiency of bioenergy technologies in climate mitigation and fossil fuel replacement in Austria using a techno-economic approach," Applied Energy, Elsevier, vol. 88(11), pages 3665-3684.
    6. Dai, Jing & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2015. "Sustainability-based economic and ecological evaluation of a rural biogas-linked agro-ecosystem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 347-355.
    7. Hahn, Henning & Krautkremer, Bernd & Hartmann, Kilian & Wachendorf, Michael, 2014. "Review of concepts for a demand-driven biogas supply for flexible power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 383-393.
    8. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.
    9. Ricci, Olivia, 2012. "Providing adequate economic incentives for bioenergies with CO2 capture and geological storage," Energy Policy, Elsevier, vol. 44(C), pages 362-373.
    10. Starr, Katherine & Ramirez, Andrea & Meerman, Hans & Villalba, Gara & Gabarrell, Xavier, 2015. "Explorative economic analysis of a novel biogas upgrading technology using carbon mineralization. A case study for Spain," Energy, Elsevier, vol. 79(C), pages 298-309.
    11. Sgroi, Filippo & Foderà, Mario & Trapani, Anna Maria Di & Tudisca, Salvatore & Testa, Riccardo, 2015. "Economic evaluation of biogas plant size utilizing giant reed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 403-409.
    12. Murphy, J.D. & Power, N., 2009. "Technical and economic analysis of biogas production in Ireland utilising three different crop rotations," Applied Energy, Elsevier, vol. 86(1), pages 25-36, January.
    13. Dach, Jacek & Boniecki, Piotr & Przybył, Jacek & Janczak, Damian & Lewicki, Andrzej & Czekała, Wojciech & Witaszek, Kamil & Rodríguez Carmona, Pablo César & Cieślik, Marta, 2014. "Energetic efficiency analysis of the agricultural biogas plant in 250kWe experimental installation," Energy, Elsevier, vol. 69(C), pages 34-38.
    14. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herbes, Carsten & Halbherr, Verena & Braun, Lorenz, 2018. "Factors influencing prices for heat from biogas plants," Applied Energy, Elsevier, vol. 221(C), pages 308-318.
    2. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    4. Zhang, Tingting & Xie, Xiaomin & Huang, Zhen, 2017. "The policy recommendations on cassava ethanol in China: Analyzed from the perspective of life cycle “2E&W”," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 12-24.
    5. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.
    6. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    7. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Rewarding of extra-avoided GHG emissions in thermochemical biorefineries incorporating Bio-CCS," Applied Energy, Elsevier, vol. 157(C), pages 255-266.
    8. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Doddapaneni, Tharaka Rama Krishna C. & Praveenkumar, Ramasamy & Tolvanen, Henrik & Rintala, Jukka & Konttinen, Jukka, 2018. "Techno-economic evaluation of integrating torrefaction with anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 272-284.
    10. Hamid, M. Fadzli & Idroas, M. Yusof & Mazlan, M. & Sa'ad, S. & Teoh, Y.H. & Che Mat, S. & Miskam, M.A. & Abdullah, M.K., 2022. "Methods for improving the in-cylinder airflow characteristics for sustainable transportation using fuels with higher viscosity: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    12. Velásquez Piñas, Jean Agustin & Venturini, Osvaldo José & Silva Lora, Electo Eduardo & del Olmo, Oscar Almazan & Calle Roalcaba, Orly Denisse, 2019. "An economic holistic feasibility assessment of centralized and decentralized biogas plants with mono-digestion and co-digestion systems," Renewable Energy, Elsevier, vol. 139(C), pages 40-51.
    13. Shane, Agabu & Gheewala, Shabbir H. & Kafwembe, Young, 2017. "Urban commercial biogas power plant model for Zambian towns," Renewable Energy, Elsevier, vol. 103(C), pages 1-14.
    14. Igliński, Bartłomiej & Buczkowski, Roman & Cichosz, Marcin, 2015. "Biogas production in Poland—Current state, potential and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 686-695.
    15. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    16. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    18. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    19. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    20. Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:88:y:2015:i:c:p:658-666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.